Electroweak Precision Measurements

8 TeV Measurements High Mass Drell-Yan Cross Sections New 3D Drell-Yan Cross Sections Systematic Uncertainties 13 TeV Plans

Collider Cross Talk - CERN 13th July 2017

Standard Model Total Production Cross Section Measurements Status: July 2017

Drell—Yan & Photon Induced Dilepton Production

General models of new physics SM Lagrangian extended by dimension 6 operators They describe new physics appearing at scale m > \sqrt{s}

- ★ new EW vector bosons
- $\star\,\text{new}\,\text{EW}\,\text{fermions}$
- ★ EW compositeness...

https://arxiv.org/abs/1609.08157

Run-I Measurements from ATLAS

 $\frac{\mathrm{d}^2\sigma}{\mathrm{d}m_{\ell\ell}\mathrm{d}|y_{\ell\ell}|}$ single, double and triple-differential cross sections

 $d^3\sigma$

 $\frac{\mathrm{d}m_{\ell\ell}\mathrm{d}|y_{\ell\ell}|\mathrm{d}\cos\theta^*}{\mathrm{d}m_{\ell\ell}\mathrm{d}^*}$

High mass DY 8 TeV Neutral current - e & µ channels 116 < m < 1500 GeV

publication:

 $\mathrm{d}\sigma$

 $\overline{\mathrm{d}} m_{\ell\ell}$

: <u>JHEP 08 (2016) 009</u>

On-shell DY 8 TeV Neutral current - e & µ channels 46 < m < 200 GeV Extended to high y with FCAL analysis preliminary public plots Expect arXiv submission ~ August

Complete 2012 data set analysed

 $\int \mathcal{L} \, dt = 20.2 \, \text{fb}^{-1}$

Centre of mass energy $\sqrt{s} = 8 \text{ TeV}$

Previous measurement (arXiv:1305.4192) used 5 fb⁻¹ $\sqrt{s} = 7$ TeV electron channel only This analysis increases precision by factor 21

This analysis increases precision by factor 3!

High Mass Z/y^{*} Selection

Muon Selection

- Good quality detector status (all sub-systems on)
- muon trigger fired (matched to lepton)
- \geq 2 good quality muons
- muon |η| < 2.4
- muon p_T > 30 GeV
- longitudinal impact parameter $|z_0| < 10 \text{ mm}$
- isolated muon $\sum p_{T,i}^{(\Delta R=0.2)}/p_T^{\mu} < 0.12$ p_T sum of tracks within a cone size $\Delta R=0.2$ is less than 12% of muon p_T
- opposite charge
- one muon has $p_T > 40 \text{ GeV}$

Electron Selection

- Good quality detector status (all sub-systems on)
- electron trigger fired (matched to lepton)
- ≥ 2 good quality "tight" electrons
- electron $|\eta| < 2.47$ excl. 1.37 < $|\eta| < 1.52$
- electron $E_T > 30 \text{ GeV}$
- isolated electron $\sum E_{T,i}^{(\Delta R=0.4)} < 0.022 \times E_T + 5 \text{ GeV}$ E_T sum of calo energy within a cone size $\Delta R=0.4$ is less than 2% of electron E_T with E_T scaled offset
- one electron has $p_T > 40 \text{ GeV}$
- $|\Delta \eta_{ee}| < 3.5$ to suppress multijet background

Fiducial Cross Section Definition

- lepton p_T > 30 GeV & p_T > 40 GeV
- lepton |η| < 2.5
- $116 < m_{ll} < 1500 \text{ GeV}$
- Unfolding to Born level lepton kinematics (dressed level available as a correction factor)

electron + muon cross sections combined account for **35** correlated systematic uncertainties improved result for both statistical & systematic precision

High Mass Z/γ^* Cross Sections $\sqrt{s} = 8$ TeV

• theory generally in agreement with data

 Measurement accuracy systematically limited for m < 400 GeV

At low m observe large spread of predictions from different PDFs compared to experimental accuracy

 \Rightarrow large potential to constrain PDFs

*m*_" [GeV]

High Mass Z/γ^* Cross Sections $\sqrt{s} = 8$ TeV

Measurements well described by predictions over complete phase space

|**y**_{||}|

√s = 8 TeV, 20.3 fb⁻¹

MMHT2014 with 68% CL

(PDF + α_{s}) + scale + PI unc.

MMHT2014 w/o PI corrections

Cross sections are measured with 1% precision at m ~ 200 GeV (each channel)

Bin-to-bin correlated systematics can be further constrained by combining channels

For larger m combination reduces \sqrt{N} statistical error

Stat error dominates at large m reaching ~20%

8 TeV cross sections for e & μ channels at m=400 GeV Run-II statistical error will be ~ factor 3 smaller

Muon channel

	$m_{\mu\mu}$	$u y_{\mu\mu} $	$\left \frac{\mathrm{d}}{\mathrm{d}m_{\mathrm{m}}} \right $	$\frac{2}{\sigma}$	δ^{stat}	$\delta^{ m sys}$	$\delta^{ m tot}$	$\delta_{ m cor}^{ m trig}$	$\delta_{ m cor}^{ m reco}$	$\delta_{\rm cor}^{\rm MSres}$	$\delta_{ m cor}^{ m IDres}$	$\delta_{ m cor}^{ m pT}$	$\delta_{ m unc}^{ m iso}$	$\delta_{ m cor}^{ m top}$	$\delta_{ m cor}^{ m diboson}$	$\delta_{ m unc}^{ m bgMC}$	$\delta_{ m cor}^{ m mult.}$	$\delta_{\mathrm{unc}}^{\mathrm{mult.}}$	$\delta_{ m unc}^{ m MC}$	k _{dressed}
	[GeV]]	[pb/C	GeV]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	
	300 - 500) 0.0 –	$0.4 3.72 \times$	10-4	4.0	2.9	4.9	-0.1	-0.6	0.2	0.1	-0.2	-0.2	-2.2	-0.8	0.7	-0.5	1.2	0.2	1.036
	300 - 500) 0.4 –	$0.8 \mid 3.28 \times$	10^{-4}	4.1	2.5	4.8	-0.1	-0.6	-0.2	-0.1	-0.3	-0.2	-1.9	-0.7	0.8	-0.4	0.7	0.2	1.036
	300 - 500) 0.8 –	1.2 3.09 ×	10^{-4}	4.0	1.6	4.2	-0.1	-0.6	0.1	-0.1	-0.3	-0.2	-1.1	-0.5	0.6	-0.1	0.2	0.2	1.034
	300 - 500) 1.2 –	1.6 2.51 ×	10^{-4}	4.1	1.1	4.2	-0.1	-0.6	0.0	0.1	-0.3	-0.2	-0.5	-0.3	0.5	-0.1	0.0	0.3	1.035
	300 - 500) 1.6 –	$2.0 1.29 \times$	10^{-4}	5.7	1.2	5.8	-0.1	-0.8	-0.2	-0.1	-0.3	-0.2	-0.2	-0.3	0.6	0.0	0.0	0.4	1.040
	300 - 500) 2.0 -	2.4 3.93 ×	10^{-5}	11.2	1.9	11.4	-0.1	-1.0	-0.3	-0.1	-0.5	-0.2	-0.1	-0.1	0.7	0.0	0.0	1.3	1.037
								X	R					×	\checkmark				×	$\overline{}$
	Muon trigger uncertainty Muon reco uncertainty Top +diboson b/g: required effort to could be reduced dilepton filtered reduce to 0.1% in future mass-binned samples									۸ ۱	IC si not a	ignal stats problem								
	(was dominant sys) needed 🦯 🖌 🖊																			
Electron channel																				
Ξ	mee	Upp	$\frac{d^2\sigma}{d}$	δ^{stat}	$\delta^{ m sys}$	δ^{tot}	$\delta_{\rm cor}^{\rm trig}$	$\delta_{\rm unc}^{\rm trig}$	δ_{aar}^{reco}	$\delta^{\rm id}_{\rm cor}$,	$\delta_{\rm or}^{\rm iso} \delta_{\rm ur}^{\rm iso}$	δ_{a}^{Eres}	$\delta^{\text{Esc}}_{\text{corr}}$	ale δ_{α}^{m}	ult. δ_{unc}^{mult}	$\delta_{\rm cor}^{\rm top}$	$\delta_{aar}^{diboson}$	$\delta_{\rm unc}^{\rm bgMC}$	δ_{uuu}^{MC}	kdressed
	[GeV]	19 001	[pb/GeV]	[%]	[%]	[%]	[%]	[%]	[%]	[%] [%] [%] [%]	[4	%] ['	% unc %] [%]	[%]	[%]	[%]	[%]	diessed
=	300-500	0.0-0.4	3.23×10^{-4}	4.6	3.3	5.7	-0.1	0.2	-0.2	-0.8 -	0.1 0.4	4 0.1	0	.9 -1	.8 0.6	-2.2	-0.8	0.8	0.3	1.080
	300-500	0.4–0.8	3.34×10^{-4}	4.3	2.8	5.1	-0.1	0.2	-0.2	-0.8 -	0.1 0.4	4 0.1	1	.4 -1	.1 0.6	-1.6	-0.7	0.7	0.3	1.072
	300-500	0.8–1.2	3.16×10^{-4}	4.3	2.8	5.2	-0.1	0.2	-0.2	-0.8 -	0.1 0.4	4 0.2	2	.0 -0).9 0.5	-1.1	-0.6	0.7	0.3	1.058
	300-500	1.2–1.6	2.30×10^{-4}	4.9	2.9	5.7	-0.1	0.2	-0.2	-0.8 -	0.1 0.4	4 0.1	2	.0 -1	1.6 0.5	-0.6	-0.4	0.6	0.4	1.053
	300-500	1.6–2.0	1.31×10^{-4}	6.5	3.2	7.3	-0.1	0.2	-0.4	-0.9 -	0.2 0.4	4 0.2	2	.8 -(0.3 0.4	-0.2	-0.2	0.5	0.6	1.047
_	300-500	2.0–2.4	3.62×10^{-5}	11.5	3.5	12.0	-0.1	0.2	-0.6	-1.0 -	0.2 0.	4 0.4	2	.5 -1	1.3 1.0	0.0	-0.1	0.8	0.9	1.046
-																-	-		-	

Energy scale - dominant systematic -

Triple Differential Z/y^{*} Measurement Motivation

Ieptonic decay angle in Collins-Soper frame
$$\cos \theta^* = \frac{p_{z,\ell\ell}}{m_{\ell\ell}|p_{z,\ell\ell}|} \frac{p_1^+ p_2^- - p_1^- p_2^+}{\sqrt{m_{\ell\ell}^2 + p_{T,\ell\ell}^2}}$$

$$\frac{\mathrm{d}^3\sigma}{\mathrm{d}m_{\ell\ell}\mathrm{d}y_{\ell\ell}\mathrm{d}\cos\theta^*} = \frac{\pi\alpha^2}{3m_{\ell\ell}s}\sum_q P_q \left[f_q(x_1, Q^2) f_{\bar{q}}(x_2, Q^2) + (q \leftrightarrow \bar{q}) \right]$$

Triple Differential Z/γ^* Measurement Motivation & sin² θ_W

Higher-order corrections

Other sources

0.235

 $sin^2 \theta_{eff}^{lept}$

0.23

3

1

2

2

3

2

1

1

Triple Differential Z/y* Measurement Motivation

×10⁻³

y spectrum shapes changes dramatically for $m_{\parallel} != m_Z$ different Z and γ^* couplings

<u>×10⁻³</u>

Eram Rizvi

Triple Differential Z/y* Selection

Muon Selection

- Good quality detector status (all sub-systems on)
- muon trigger fired (matched to lepton)
- \geq 2 good quality muons
- muon |η| < 2.4
- muon p_T > 20 GeV
- longitudinal impact parameter $|z_0| < 10 \text{ mm}$
- isolated muon $\sum p_{T,i}^{(\Delta R=0.2)}/p_T^{\mu} < 0.12$ p_T sum of tracks within a cone size $\Delta R=0.2$ is less than 12% of muon p_T
- opposite charge

- **Central Electron Selection**
- Good quality detector status (all sub-systems on)
- electron trigger fired (matched to lepton)
- ≥ 2 good quality "medium" electrons
- electron $|\eta| < 2.4$ excl. 1.37 < $|\eta| < 1.52$
- electron $E_T > 20 \text{ GeV}$

Fiducial Cross Section Definition

- lepton p_T > 20 GeV
- lepton |η| < 2.5
- 46 < m_{ll} < 200 GeV
- Unfolding to Born level lepton kinematics (dressed level available as a correction factor)

High Rapidity Electron Selection

- Good quality detector status (all sub-systems on)
- electron trigger fired (matched to lepton)
- 1 good quality "tight" central electron
 - electron $|\eta| < 2.47$ excl. 1.37 < $|\eta| < 1.52$
 - electron $E_T > 25 \text{ GeV}$
- 1 good quality "tight" forward electron
 - electron 2.5 < $|\eta|$ < 4.9 excl. 3.0 < $|\eta|$ < 3.4
 - electron $E_T > 20 \text{ GeV}$

Fiducial Cross Section Definition

- lepton $p_T > 25$ GeV & lepton $|\eta| < 2.5$
- lepton $p_T > 25$ GeV & lepton $2.5 < |\eta| < 4.9$
- $66 < m_{ll} < 150 \text{ GeV}$
- Unfolding to Born level lepton kinematics (dressed level available as a correction factor)

Central Rapidity Channel

	m∥ =	[46, 66, 80, 91, 102, 116, 150, 2	00] GeV	7 bins
	y _{II} = [0.0,	12 bins		
	cos θ*=	[-1.0, -0.7, -0.4, 0.0, 0.4, 0.7,	, 1.0]	6 bins
measure in check for c	electron + mu onsistency of c	on channels hannels ents	Total bins = x 2 channels	504
account for improved r	~200 correlate esult for both st	ed systematic errors tatistical & systematic precision	Binning cho control o statistic physics	oice optimised for experimental bin migrations al precision sensitivity

High Rapidity Channel

m _{II} =	[66, 80, 91, 102, 116, 150] GeV	5 bins
y ₁₁ =	[1.2, 1.6, 2.0, 2.4, 2.8, 3.6]	6 bins
cos θ*=	[-1.0, -0.7, -0.4, 0.0, 0.4, 0.7, 1.0]	6 bins
	Total bins =	150

Already good precision achieved for run-II !

Need to ensure phase-space corners are well covered e.g. boosted Zs access high pT lepton efficiencies For run-I lepton pT ~ 200 GeV For run-II we should reach lepton pT ~ 400 GeV

Electron Channel

Energy scale dominates error at large $|\cos \theta^*| \rightarrow \sim 3\%$

efficiency error also large at at large $\cos \theta^*$ (even at small |y|) $\rightarrow \sim 2-3\%$

Muon Channel

In peak region at $m \sim m_Z$ momentum scale dominates sys error $\rightarrow \sim 0.6\%$ compared to 0.8% stat error

Tracking misalignments ~ 1.7% cf stat error 2% at small $\cos \theta^*$ or large y

High Rapidity Electron Channel

Energy scale / resolution dominates error at large $|\cos \theta^*| \& y \rightarrow \sim 5\%$ compared to $\sim 3\%$ stat error

Combination of channels constrains correlated systematic uncertainties

Improved precision for combined central channels

Triple-differential Z/y^* Cross Sections $\sqrt{s} = 8$ TeV

Central rapidity electron & muon combined result Large forward-backward asymmetry at low mass, decreasing to ~zero at m_{\parallel} ~ m_Z

Upper plots: shaded regions highlight equal $|\cos \theta^*|$

46 < m < 66 GeV

80 < m < 91 GeV

Triple-differential Z/γ^* Cross Sections $\sqrt{s} = 8$ TeV

Data precision reaches ~0.5% for $m_{II} \sim m_Z$

Good agreement with Powheg based predictions incl. NNLO/NLO k-factor (and Z polarisation correction)

Triple-differential Z/ χ^* Cross Sections $\sqrt{s} = 8$ TeV

High y region has greatest sensitivity to $\sin^2 \theta_W$ and PDFs High y analysis shows much larger asymmetry

Forward-Backward Asymmetry

Forward-Backward Asymmetry

High rapidity channel

For A_{FB} measurements uncorrelated sources dominate: data stats are factor 2 larger than MC stat / multijet unc / bg MC stats correlated sources ~ factor 10 smaller

Summary - I

- Measurement of DY cross section at \sqrt{s} = 8 TeV presented
- High mass phase space 116 < m < 1500 GeV
- Precision of 1% attained at low m
- Data compatible with NNLO pQCD \otimes NLO EW
- Measurements are sensitive to PDF

- New measurement of DY cross section at \sqrt{s} = 8 TeV shown
- on-shell analysis covers phase space 46 < m < 200 GeV
- triple-differential cross sections determined
- Precision of 0.5% attained at m = m_Z
- \bullet Data compatible with NNLO pQCD \otimes NLO EW
- Data to be published in ~3-4 weeks
- Plan to extract $\sin^2 \theta_W$ in follow-up paper ~ 6 months

LHC Schedule to 2035

* actual schedule slipped by 1 year
 e.g. LS3 starts 2023

Large increases in intensity Requires significant changes to LHC magnets Higher intensity means faster degradation of experiments

LS = Long Shutdown for repairs and upgrades

High Mass W/Z/ γ^* Production at $\sqrt{s} = 13$ TeV

 $m_{\mu\mu} > m_Z$ – high muon p_T / new physics / high x partons

- At large Q $\sigma(W^+) > \sigma(W^-) >= \sigma(\gamma^*)$ by ~ factor 2
- Run-II total ∫L~120 fb⁻¹
- Lumi ~ 4-5 times larger than Run-I
- Factor >2 larger cross section at 13 TeV
 ⇒ order of magnitude more data

High mass DY reaches high x region Factor 5 higher x than on-shell Z at 8 TeV At M=300-500 can achieve ~ 2% precision for |y| < 1

High Mass W/Z/ χ^* Production at $\sqrt{s} = 13$ TeV

Run-I precision measurements gained excellent knowledge of ATLAS detector and performance Improved our calibration methods

Will allow us to improve detector modelling

Now have experience of highly differential measurements with leptonic decay angles

Extend measurement using FCAL to high |y|

Aim to now extend the precision region at higher m

Measure lepton decay angle also at high m

 Muon tracking misalignment uncertainties affects single-charge measurements i.e. W⁺ and W⁻
 Much better treatment planned for run2 analyses

Process	Generator	Parton shower	Generator PDF	Model parameters ("Tune")
Drell–Yan	Powheg	Рутніа 8.162	CT10	AU2 [67]
Drell–Yan	MC@NLO 4.09	Herwig++2.6.3	CT10	UE-EE-3 [39]
PI	Рутніа 8.170	Рутніа 8.170	MRST2004qed	4C [68]
$t\bar{t}$	Powheg	Pythia 6.427.2	CT10	AUET2 [69]
$t\bar{t}$	MC@NLO 4.06	Herwig 6.520	CT10	AUET2
Wt	MC@NLO 4.06	Herwig 6.520	CT10	AUET2
Diboson	Herwig 6.520	Herwig 6.520	CTEQ6L1	AUET2

Drell—Yan signal simulated at NLO in matrix element with PS cross section is scaled to mass dependent NNLO calculation (FEWZ)

includes final state photon emission (photos)

(for cross checks MC@NLO is also used)

25 — 1000 x data statistics simulated

Photon Induced cross section available at LO only in pythia

20 — 6000 x data statistics simulated

Top production simulated at NLO and renormalised to NNLO+NNLL prediction 5 x data luminosity

Diboson production channels simulated at LO with herwig

40 — 50,000 x data statistics simulated

Electroweak Backgrounds

Several sources of so called "electroweak" backgrounds yielding isolated dileptons:

 $DY \rightarrow tau$ production modes found to be negligible contribution

Multijet Backgrounds

multijet background

multijet production dominates cross section at LHC Also large W+jets cross section contributes to background via:

- leptonic meson decays
- misidentification of hadron jet as calorimeter electron

soft leptons produced typically

contributing processes involve complex hadronisation simulation

 \Rightarrow use data to estimate this background

muon channel

use same sign dimuons as proxy for mulitjet b/g

assume ratio of same sign to opp sign pairs is same in isolated and in non-isolated region <1% contribution in muon channel

<u>electron channel</u>

use matrix method:

 $N_T / N_L \rightarrow$ "tight" / "loose" identified electrons $N_R / N_F \rightarrow$ "real" / "fake" electrons

dielectron pairs

$$\begin{pmatrix} N_{TT} \\ N_{TL} \\ N_{LT} \\ N_{LL} \end{pmatrix} = \begin{pmatrix} r_1 r_2 & r_1 f_2 & f_1 r_2 & f_1 f_2 \\ r_1 (1 - r_2) & r_1 (1 - f_2) & f_1 (1 - r_2) & f_1 (1 - f_2) \\ (1 - r_1) r_2 & (1 - r_1) f_2 & (1 - f_1) r_2 & (1 - f_1) f_2 \\ (1 - r_1) (1 - r_2) & (1 - r_1) (1 - f_2) & (1 - f_1) (1 - r_2) & (1 - f_1) (1 - f_2) \end{pmatrix} \begin{pmatrix} N_{RR} \\ N_{RF} \\ N_{FR} \\ N_{FF} \end{pmatrix}$$

Depends on:

f = fake rate probability (estimated from dijet data)

r = real electron efficiency (estimated from MC)

~4% contribution in electron channel

Electron Channel Control Plots

Simulation provides good description of electron data to better than 5%

Muon Channel Control Plots

Simulation provides good description of muon data to better than 5%

 \Rightarrow can use MC simulation to unfold for detector resolution to Born level kinematics

Cross Section

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d}m_{\ell\ell} \,\mathrm{d}|y_{\ell\ell}|} = \frac{N_{\mathrm{data}} - N_{\mathrm{bkg}}}{C_{\mathrm{DY}} \,\mathcal{L}_{\mathrm{int}}} \frac{1}{\Delta_{m_{\ell\ell}} \,2\Delta_{|y_{\ell\ell}|}} \quad \leftarrow \text{ bin widths}$$

 C_{DY} unfolds detector resolution effects (from DY+PI signal MC)

Bin purities typically $\ge 85\%$ (and $\ge 75\%$ everywhere)

C_{DY} includes small extrapolations to reach common fiducial phase space:

- muon: $|\eta| < 2.4 \rightarrow |\eta| < 2.5$
- electron: $|\eta| < 2.47 \text{ excl. } 1.37 < |\eta| < 1.52 \rightarrow |\eta| < 2.5$
- electron: $|\Delta \eta_{ee}| < 3.5 \rightarrow |\Delta \eta_{ee}| < \infty$ (for dmd|y| cross section only)

Combination

Combine electron & muon channel measurements in averaging procedure Minimise difference between measurements Taking correlated uncertainties into account

$$\chi^2_{tot}(\mathbf{m}, \mathbf{b}) = \sum_i \frac{[\mu^i - m^i(1 - \sum_j \gamma^i_j b_j)]^2}{\delta^2_{i,stat} \mu^i m^i(1 - \sum_j \gamma^i_j b_j) + (\delta_{i,unc} m^i)^2} + \sum_j b_j^2$$

bin-to-bin correlated error sources *j* = 35 including

- lepton trigger, ID, isolation efficiencies
- lepton scale and resolution uncertainties
- background contributions

• etc....

- μ^i = measurement
- m^i = averaged value
- $y^{i_{j}}$ = correlated sys uncertainty on point *i* from error source *j*
- b_j = systematic error source strength

nuisance parameter left free in fit but constrained no extra degrees of freedom due to additional constraint

i data points

Combination of Electron & Muon Channels

Combination

Cross sections are measured with 1% precision at low m (each channel)

Measurement accuracy systematically limited for m < 400 GeV

Bin-to-bin correlated systematics can be further constrained by combining channels

For larger m combination reduces \sqrt{N} statistical error

Stat error dominates at large m reaching ~20%

Excellent agreement between channels over full range

 χ^2 /ndf = 14.2 / 12 = 1.19

all nuisance parameters < 1 standard deviation

Combination of Electron & Muon Channels

Combination of Electron & Muon Channels

Combined Differential Cross Sections

data/theory ratio

PI contribution increases with m and decreasing $|y_{II}|$

PDF uncertainties calc'd for each PDF scaled to 68% CL ABM uncertainty smaller than MMHT CT14, NNPDF3.0 uncertainty larger than MMHT HERAPDF2.0 uncertainty much larger than MMHT

Compatibility of data to predictions with other PDFs tested with χ^2 function

	$m_{\ell\ell}$	$ y_{\ell\ell} $	$ \Delta\eta_{\ell\ell} $
MMHT2014	18.2/12	59.3/48	62.8/47
CT14	16.0/12	51.0/48	61.3/47
NNPDF3.0	20.0/12	57.6/48	62.1/47
HERAPDF2.0	15.1/12	55.5/48	60.8/47
ABM12	14.1/12	57.9/48	53.5/47

All data & theory correlated errors treated as nuisance parameters e.g. PDF eigenvectors (incl. for NNPDF)

Data in agreement with predictions: χ^2 probability at worst ~6%

Combined Differential Cross Sections

► Data

Sys. uncertainty

Total uncertainty

w/o luminosity uncer.

 $\frac{d^2\sigma}{dm_{/\!/}d|\!\Delta\eta_{/\!/}|}~~{\rm data/theory~ratio}$

PI contribution increases with m and $|\Delta\eta_{II}|$

Similar conclusions here:

At low m spread of PDFs is larger than data accuracy

PDF uncertainty is dominated by PI piece at large $|\Delta \eta_{\parallel}|$

Triple-differential Z/γ^* Cross Sections $\sqrt{s} = 8$ TeV

150 < m < 200 GeV

High Mass W/Z/X*

Classic problem: how to constrain PDFs at high x for BSM searches?

Measure cross sections at high rapidity

FCAL forward electrons \rightarrow PDF sensitivity up to x=1 at m=500 GeV

High Mass W/Z/y* Inclusive Cross Sections

Neutral current

Cross section enhancement > factor 5 at large m_{\parallel} Similar for charged current

Charged current

First measurement off-shell high m_T W[±] production Analogous to neutral current Z/ γ^* measurement