Black Holes Recap

The Problematic Standard Model

Extra Dimensions & the Planck Scale

Black Hole Production & Decay

Current Constraints

Signatures at the LHC

Qatar University Seminar – 10th April 2011
In last ~150 years physics has developed enormously

Three major pillars of modern physics have emerged

- general relativity \(2 \times 10^{-5}\) Cassini photon freq. shift close to Sun
- thermodynamics \(1 \times 10^{-7}\) WMAP precision of CMB fluctuations to 1%
- quantum mechanics \(1 \times 10^{-12}\) Measurement of electron g-2

Tested to unprecedented precision

- Black Hole studies are unique - combines all three areas
- Raises some very interesting questions about the nature of spacetime
- Ideas have very appealing simplicity
- Potential to answer one or several fundamental puzzles
In QM all particles associated with a compton wavelength
\[\lambda = 1/E \]

In GR any object with energy-momentum \((T_{\mu\nu}) \) will cause curvature of space-time \((g_{\mu\nu}) \)

Thus objects warp space-time around themselves and this modifies the objects equations of motion

For fundamental particles expect this influence at Planck Scale - \(M_P \)

\[
M_P = \sqrt{\frac{\hbar c}{G}} \quad \text{where} \ G = \text{Gravitational constant}
\]

\[M_P \sim 10^{19} \text{ GeV} \quad (\Rightarrow \text{hierarchy problem}) \]
For a spherically symmetric mass distribution the solution is 4d line element given by:
\[
\text{ds}^2 = g_{\mu\nu}dx^\mu dx^\nu = -\gamma(r)dt^2 + \gamma(r)^{-1}dr^2 + r^2d\Omega^2
\]
\[
\gamma(r) = 1 - \frac{1}{\frac{2M}{m^2_P}}\frac{2M}{r}
\]

So, for masses small compared to M_P then $\gamma = 1$

For large energies metric is distorted by order E/M^2_P

At energies close to Planck Mass distortions cannot be neglected

Metric becomes singular at $r = \frac{2M}{M^2_P} = r_s$ the Schwarzschild radius

Schwarzschild radius is soln of GR in case of non-rotating uncharged BHs

First solution to GR discovered 1 month after Einstein's publication
A more generic solution was found for charged rotating black holes

Solve classical electro-dynamics in GR field equations yields the Kerr-Newmann metric

Size of event horizon generalises to r_h

Bring mass M within a radius r_s and a singularity will form

Event horizon is all we can observe from our side of the universe

For Earth $r_s = 1\text{cm}$

Rotating Kerr solution published 1963

A more generic solution was found for charged rotating black holes

Solve classical electro-dynamics in GR field equations yields the Kerr-Newmann metric

Charged rotating BH

Kerr-Newmann solution published 1965
The Problematic Standard Model

Jump to particle physics...

The Standard Model is fantastically successful

... but ...
The Problematic Standard Model

<table>
<thead>
<tr>
<th></th>
<th>Quarks</th>
<th>Leptons</th>
</tr>
</thead>
<tbody>
<tr>
<td>+2/3</td>
<td>u u u</td>
<td>e</td>
</tr>
<tr>
<td>-1/3</td>
<td>d d d</td>
<td>ν_μ</td>
</tr>
<tr>
<td></td>
<td>b b b</td>
<td>ν_τ</td>
</tr>
</tbody>
</table>

Fermions
- u
- d
- s
- b

Bosons
- g
- W
- Z
- γ
- H

61 'fundamental' particles in the SM! (including anti-particles)
The Problematic Standard Model

22 Parameters of the SM to be measured
6 quark masses
3 charged leptons masses
3 coupling constants
4 quark mixing parameters
4 neutrino mixing parameters
1 weak boson mass (other predicted from remaining EW params)
1 Higgs mass

(better than 105 params of generic SUSY)

We have no idea what 96% of the universe is!
• unknown form of dark energy
• unknown form of dark matter

No treatment of gravity in the Standard Model...
In a symmetric theory gauge bosons are massless
Higgs mechanism explains EW symmetry breaking
→ EW bosons acquire mass

...but there must be a deeper relationship
between Higgs / mass / gravity / dark energy
The Problematic Standard Model

Dark energy acts to accelerate the expansion of the universe i.e. repulsive gravity

Best guess is:
constant across cosmos
property of the vacuum

Evidence from
• supernovae
• CMB - flat cosmological geometry
• blue shift of CMB photons in gravity wells
 (integrated Sachs-Wolfe effect)

Summing zero-point vacuum fluctuations of SM fields incl. Higgs yields energy density 10^{120} times larger than measured!!!

“the worst theoretical prediction in the history of physics!”*

(not surprising that it's related to what Einstein called “his greatest blunder”)

Back to particle physics:
insufficient CP violation & no Baryon number violation able to account for our matter dominated universe

The Hierarchy Problem

Why is gravity $\sim 10^{33}$ weaker than EW interactions?

Why is Higgs mass (~ 100 GeV) so much smaller than Planck mass (10^{19} GeV)?

Leads to fine tuning problem

Self energy corrections to Higgs mass are quadratically divergent up to 10^{19} GeV

physical mass = bare mass + “loops” $m_H^2 = m_0^2 + \Delta m_H^2$

since Higgs is scalar field we get:

for top: $\Delta m_H^2 = -\frac{6}{16\pi^2} g_t^2 \Lambda^2$ (g is Yukawa coupling)

for EW bosons: $\Delta m_H^2 = +\frac{1}{16\pi^2} g^2 \Lambda^2$

for Higgs: $\Delta m_H^2 = +\frac{1}{16\pi^2} \lambda^2 \Lambda^2$ (λ is Higgs self-coupling)

$m_H^2 = m_0^2 + \frac{1}{16\pi^2} \left(-6g_t^2 + g^2 + \lambda^2\right) \Lambda^2 - \ldots$ new physics ...

For $\Lambda^2 \sim (10^{19} \text{ GeV})^2$ and $m_H^2 \sim (100 \text{ GeV})^2$ then

$m_H^2 = m_0^2 + \frac{1}{16\pi^2} \left(-6g_t^2 + g^2 + \lambda^2\right) \cdot 10^{38} = (100 \text{ GeV})^2$

- if SM is valid to this scale (i.e. no new physics from 1 TeV - 10^{19} GeV)
 incredible fine tuning required between bare mass and the corrections to maintain ~ 100 GeV Higgs mass
Welcome to the Standard Model
What if there is no new scale in particle physics up to M_p?

We will have to live with the fine tuning problem

Use anthropic arguments

(of all possible universes with different physics parameter values
only universes with our parameter settings could lead to humans existing)

Alternative approach:

Perhaps we can bring M_p down to ~ 1 TeV

Introduce large extra spatial dimensions (large ~ 1 mm)

Standard Model confined to a 3-brane •
Embedded in higher dimensional space •
Only gravity propagates in extra dimensions •
1920s - Kaluza & Klein attempted to unify general relativity & Maxwell's EM incorporated U(1) gauge symmetry into 5d spacetime
if extra dimension is compactified then EM & Lorentz symmetries remain
photon becomes 4d manifestation of 5d graviton

Theory suffered problems
unable to explain vast difference in strengths of two interactions
unable to combine with quantum mechanics
later discoveries of weak & strong interactions did not fit into the scheme

Supersymmetry & string theory in 1970s / 1980s revived concept of extra dimensions

some of gravity's non-renormalizability could be accommodated in string theory
requires 10 / 11 spatial dimensions
predicted spin 2 massless particle (graviton)
graviton is expected to be massless (gravity has infinite range)
graviton is expected to be spin 2
(since gravity is described by 2nd rank energy-momentum tensor)
ADD Model of Large Extra Dimensions

- All standard model particles are trapped to surface of this hyper-cylinder.
- Particles moving in the bulk have quantised wave functions (like 1d potential well).
- Higher order modes appear as higher energy excitations.
- Mass difference between successive states related to size of dimension R.
- Can lead to infinite Kaluza-Klein towers of particles; massless gravitons would appear as a tower of massive states on our brane.

Momentum in extra dim appears as additional mass: $M^2 = E^2 - P_x^2 - P_y^2 - P_z^2 - P_n^2$

Antoniadis, Arkani-Hamed, Dimopoulos, Dvali: hep-ph/9803315, 9804398, 9807344
Why are the extra dims < 1 mm?

- Gravity has only been tested down to this scale!
- Current torsion balance experiments set limit on $1/r^2$ dependence to <0.16 mm

Where are the extra dimensions?

- Curled up (compactified) and finite
- Only visible at small scales / high energies

Relative strength of gravity explained by dilution of gravitons propagating in very large volume of bulk space
Gauss' Law for gravity: surface integral over closed volume containing vector field \(g \) gives total enclosed mass \(M \)

\[
\int g \cdot dA = -4\pi M \quad \text{yields Newton's law} \quad F = \frac{m_1 m_2}{r^2}
\]

With \(n \) extra spatial dimensions each of size \(R \)

\[
F = G_D \frac{m_1 m_2}{r^{2+n}}
\]

\[
F = \left(\frac{G_D}{R^n} \right) \frac{m_1 m_2}{r^2}
\]

i.e \(G = \frac{G_D}{R^n} \)

For \(r \gg R \) we recover Newtonian gravity

Planck scale: \(M_P^2 = \frac{\hbar c}{G} \)

In extra dimensions full scale of gravity \(M_D \) is given by

\[
M_{D}^{2+n} = \frac{\hbar c}{G_D} = \frac{M_P^2}{R^n}
\]

Thus \(M_D \) can be \(\sim 1 \) TeV when \(R^n \) is large

For \(n=1 \) and \(M_D = 1 \) TeV then \(R \sim 10^{16} \) m \(\Rightarrow \) already excluded!
Randall-Sundrum Model of Warped Extra Dimensions

Spacetime is structured as two separated 3-branes: SM and Planck

Two 3-branes connected with 1 extra dimension

Gravitons propagate in the bulk

Extra dimension highly curved with an exponential warp factor

\[k = \text{warp factor} \]

models characterised by scale \(k/M_P \)

\[M_P^2 = 8\pi \frac{M_D^3}{k} \left(1 - e^{2\pi kR} \right) \]

Eram Rizvi

University of Qatar Seminar - 10th April 2011
Gravity at Small Distances

Dark energy is \(\sim 74\%\) of critical density of universe

\[\Rightarrow \text{density of dark energy } \rho_d \sim 0.0038 \text{ MeV/cm}^3 \]

\[\Rightarrow \text{distance scale } L_d = 4 \sqrt[4]{\frac{\hbar c}{\rho_d}} \sim 85 \text{ \(\mu\)m} \]

could be a fundamental distance scale...

Test inverse square law at small distances with torsion balance experiments

Measure torsion forces between test and attractor masses in horizontal plane (actually holes in two rings)

Measure torque vs vertical separation

Sensitive to \(\sim 1\) nanoradian twists

(angle subtended by 1 mm at distance of 1000 km)
Gravity at Small Distances

\[V(r) = -G \frac{m_1 m_2}{r} [1 + \alpha \exp(-r/\lambda)] \]

strength of new Yukawa-like potential
range of new Yukawa-like potential

Inverse square law holds for \(\lambda < 56 \, \mu m \)
\[\Rightarrow \text{extra dims have} \]
\[R < 44 \, \mu m \, 95\% \text{ C.L.} \]

Summary of measurements of G 1969-1999
Many large discrepancies...

Gravity at Large Distances

Reich: Nature 466, 1030 (2010)
Micro Black Hole Production

In collisions Black Hole forms when impact parameter < $2r_S$

$$M_{BH} = \sqrt{s \cdot x_a \cdot x_b} = \sqrt{\hat{s}}$$

r_S increased by factor R^n

$$r_s = \frac{2GR^n M_{BH}}{c^2}$$

Should observe continuous mass spectrum of BHs

$M > M_D$

In absence of any real theory use classical cross section:

$$\sigma_{BH}(\hat{s}) = F \pi r_s^2$$

parton cross section

$F = $ production form/fudge factors

$$\sigma_{BH}(s) = \sum_{a,b} \int \int dx_a \cdot dx_b \cdot f_a(x_a) \cdot f_b(x_b) \cdot \sigma_{BH}(\hat{s})$$

convolute PDFs to get total production cross section

Simple but extremely robust prediction!
Cross section increases with s

For $s \gg M_D$ BH production will dominate over SM processes

For example very high E_T jets no longer produced \Rightarrow form BH

Energy redistributed as lower momenta thermal emissions

“The end of short distance physics”

Giddings, Thomas: hep-ph/0106219v4
BHs do not conserve B, L, or flavour
⇒ Raises problems: proton decay, n-nbar oscillations...

Proton kinematically allowed to decay to any lighter fermion
Only protected by B conservation (which must be violated at GUT scale!)
Only option is e^+ ⇒ thus p decay violates lepton number too

\[
p \rightarrow e^+ + \gamma \\
p \rightarrow e^+ + \pi^0
\]

Many ADD models predict too fast proton decay
(Super Kamiokande limit: $t \sim 10^{33}$y arXiv:0903.0676

Split Fermion Model
In this model spacetime structure is further modified
SM fermions exist on separated 3d branes
SM bosons propagate in the 'mini bulk' between them

Split fermion model may also explain fermion mass hierarchy

Arkani-Hamed,Schmaltz DOI:10.1103/PhysRevD.61.033005
Dai, Starkman, Stojkovic: hep-ph/0605085
Astrophysical black holes characterised by 3 numbers only

- M mass
- Q electric charge
- J angular momentum

Metaphorically: 'bald' BH has only 3 hairs

In context of micro BH - they can also carry colour charge
(astro BHs only absorb colourless hadrons anyway)

Infalling matter has entropy, 2nd law then implies BH have entropy too
BH cannot be a single microstate!
- infalling matter will always increase r_s never decrease
entropy \propto surface area

Then it follows that an object with entropy has a temperature...

$$\frac{\partial S}{\partial E} = \frac{1}{T}$$
Hawking Radiation

Near event horizon vacuum fluctuations interact with warped spacetime
Negative energy particle of virtual pair falls into BH, other becomes real
⇒ BH loses mass
radiate a black body spectrum with temp T_H

$$T_H = \frac{1}{8\pi} \frac{\hbar c^3}{G k_B} \frac{1}{M_{BH}}$$

Astro-BHs have temp < CMB
Micro BHs are very hot - radiate intensely
⇒ BH evaporate

Hawking radiation is purely thermal
only depends on M, Q, J, Col

First formula to connect fundamental constants of thermodynamics, GR & QM!
Information Paradox

No hair (bald) theorem of BHs \Rightarrow violation of baryon nr, lepton nr, flavour

Two BHs of equal M, J, Q, but made of matter and anti-matter are identical

Independent of all other information - i.e. what 'stuff' fell into BH

Information loss paradox - else BH must remember what it swallowed
info remains inside BH? What happens when it decays?

In QM time evolution is unitary transformation:

\[\langle \psi | \psi \rangle = \langle \psi | U^\dagger U | \psi \rangle = \langle \psi' | \psi' \rangle \]

Initial state BH transforms to final state of purely thermal radiation (M, Q, J)

\[U^\dagger U = I \Rightarrow U^{-1} = U^\dagger \]

Thus unitary transforms are reversible – but pure thermal state \rightarrow e.g. pure baryon state cannot happen unless additional info / quantum numbers are known!

Hawking now claims non-thermal info-preserving radiation

S. Hawking: hep-th/0507171
Collision produces complex state as horizon forms
Not all energy is trapped behind horizon

Extremely short lifetime \(\sim 10^{-25} \) s

Balding
Energy lost as BH settles into 'hairless' state

Evaporation
Thermal Hawking radiation in form of SM particles & gravitons
Greybody factors give emission probs for all quanta

Plank Phase
For \(M_{BH} \sim M_{D} \) unknown quantum gravity effects dominates. BH left as stable remnant or final burst of particles
Limitations of the Models

Clearly much is missing in these models

- No knowledge of true quantum gravity
- Semi-classical approximation fails for $M_{BH} \sim M_D$
- Formation of event horizon \Rightarrow not all energy trapped inside
- Greybody emission factors - QFT in strongly curved spacetime
 they have credence since solutions yield thermal spectra
 i.e. conspiracy of nature to be self-consistent!
- Several calculations performed yield agreement at \sim1% level
- Nevertheless calcs assume fixed metric...

Phenomenological suppression of modes that increase $|Q|$ or Colour

Important to explore full phenomenological space
Include all effects into MC simulations

Gingrich: hep-ph/0609055
MC Generators

Incorporate all effects into MC models
- energy loss prior to horizon formation
- grey body particle emission factors
- rotation of BH (ang.mom)
- recoil of BH
- conservation/violation of B,L,flavour
- number, size & location of extra dimensions

BlackMax Dai et.al. arXiv:0711.3012
Charybdis Frost et.al. arXiv:0904.0979

BH recoils at each emission
Affects emission spectra
Mostly emits quarks gluons

Split fermion model

\[\text{lepton brane} \quad \text{0.002 fm} \quad \text{extra dim} \]

BH is formed on quark brane at pp colliders
Downloads: hepforge.org
Current Constraints

Search for deviations from SM cross sections with increasing $m \sqrt{s}$...
Look for $qq \to Gg$ scattering - monojet events (graviton unseen in extra dim)

Graviton scattering derived as low energy effective field theory
Giudice, Rattazzi, Wells: hep-ph/9811291

HERA: e-jet
H1: $M_D^- > 0.90 \text{ TeV}$ and $M_D^+ > 0.91 \text{ TeV}$
ZEUS: $M_D^- > 0.94 \text{ TeV}$ and $M_D^+ > 0.94 \text{ TeV}$

coupling $\pm \lambda$ has unknown sign of interference with SM

LEP: $\gamma + \not{E_T}$
$M_D > 1.60 \text{ TeV}$ for $n = 2$ (equiv: $R < 0.19 \text{ mm}$)
$M_D > 0.66 \text{ TeV}$ for $n = 6$ (equiv: $R < 0.05 \text{ nm}$)
convert to equivalent compactification radius using relation with Newton's const.

CDF: $\gamma/jet + \not{E_T}$
$M_D > 1.40 \text{ TeV}$ for $n = 2$
$M_D > 0.94 \text{ TeV}$ for $n = 6$

D0: ee, $\gamma\gamma$, jet-jet
$M_D > 2.16 \text{ TeV}$ for $n = 2$
$M_D > 1.31 \text{ TeV}$ for $n = 7$

LEP: arXiv: hep-ex/0410004
H1: H1prelim-10-161 (2010)
ZEUS: ZeusPrel-09-013 (2009)
D0: Phys. Rev. Lett. 102, 051601 (2009)

Variety of limits exclude $\sim 1 \text{ TeV}$
Summary of constraints from astrophysical measurements & colliders (2003)
Colliders probe large n
Supernovae & neutron stars probe low n: nucleon graviton-strahlung $NN \rightarrow NNG$
A graviton flux would cause reduced neutrino flux from supernova
\rightarrow place strong limits on M_D for $n=2,3$

ultra high energy neutrino showers
- deep in atmosphere
- horizontal
BH mediated cross section \gg SM

Lower limits on fraction of trapped energy (indep. of M_D)

Form factors

r_h is generalisation of r_s for spinning BHs

$b = \text{impact parameter}$

$b_{\text{max}} = \text{horizon radius } 2r_h$

Large $b \Rightarrow$ large ang mom states

For 'head on' collisions ($b=0$) \sim70% of energy is trapped in event horizon

For large impact parameter only 1% - 50% of energy forms BH
Potentially very large cross sections predicted
Horizon radius increases with $n \Rightarrow$ cross sections increase with n
Factor 10 variation in cross section for $n=1$ to 7

$\sqrt{s} = 14$ TeV $M_D = 1$ TeV

Parton cross section

Single top: 250 pb

pp cross section
Incl. trapped energy
Cross Sections for LHC

BlackMax prediction for non-rotating BHs

Dai et al: arXiv 0711.3012

Close to M_D observe jump in $2 \rightarrow 2$ scattering? May be dominant effect

Meade, Randall: arXiv 0808.3017

Factor $\sim 10^2$ suppression for $M_D =$ 1 to 5 TeV

Semi-classical approach fails when $M_{BH} \sim M_D$

Don't expect BH to form - but gravitational scattering...? quasi bound state of quantum BH
LHC Signatures

Emission spectra change depending on the models chosen

Typical ratio ~ 8:1 hadrons:leptons

Leptons heavily suppressed in split fermion model

Graviton modes suppressed at low n

<table>
<thead>
<tr>
<th>scenario</th>
<th>q+g</th>
<th>leptons</th>
<th>neutrinos</th>
<th>W/Z</th>
<th>G</th>
<th>H</th>
<th>photons</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=1 / J=0</td>
<td>79.0%</td>
<td>9.5%</td>
<td>3.9%</td>
<td>5.7%</td>
<td>0.2%</td>
<td>0.9%</td>
<td>0.8%</td>
</tr>
<tr>
<td>n=7 / J=0</td>
<td>74.0%</td>
<td>7.7%</td>
<td>3.2%</td>
<td>6.8%</td>
<td>6.5%</td>
<td>0.7%</td>
<td>1.5%</td>
</tr>
<tr>
<td>n=7 / J=0 / split=7</td>
<td>84.0%</td>
<td>1.8%</td>
<td>0.5%</td>
<td>5.4%</td>
<td>6.7%</td>
<td>0.3%</td>
<td>1.6%</td>
</tr>
<tr>
<td>n=7 / J>0</td>
<td>78.0%</td>
<td>6.5%</td>
<td>2.5%</td>
<td>9.6%</td>
<td>??</td>
<td>0.7%</td>
<td>2.6%</td>
</tr>
</tbody>
</table>

Uncalculated graviton greybody factors for J>0
Expected to be large - super irradiance
Gravitons are spin-2 tensors
LHC Signatures

High multiplicity events: 10-40 particles from heavy state

Hard P_T spectrum of decay particles

$<N>$ falls as n increases
(BH temp increases)

Multiplicity compared to SM
\[\mathcal{L} = 1 \text{ fb}^{-1} \quad M_{BH} > 5 \text{ TeV} \quad M_D = 1 \text{ TeV} \quad n=2 \]

- \(\Sigma |P_T| > 2.5 \text{ TeV} \)
- lepton \(P_T > 50 \text{ GeV} \)

Requirement of additional high \(P_T \) lepton reduces QCD b/g dramatically.

If Atlas / CMS cannot trigger these events we should give up now!

highest threshold jet trigger (400 GeV \(P_T \)) unprescaled, \(\varepsilon = 100\% \)
ObjectMultiplicity for $\Sigma|P_T| > 300$ GeV

Require ≥ 3 objects

3-jet events dominate

Normalise MC to region
$300 < M < 800$ & $\Sigma|P_T| > 300$ GeV

$Z / W / t / \tau$ reconstruction not needed
Semi-classical BHs produced for $M_{BH} \gg M_D$ – true thermodynamic objects

Entropy $S = k_B \ln(\Omega)$ \hspace{1cm} Ω=number of microstates

Close to M_D this is not expected to hold – effects of QM dominate dynamics

These two regimes can be distinguished: semi-classical approach valid when

Compton Wavelength \hspace{1cm} $\lambda_C = \frac{h}{M_{BH} c} < r_s$

σ_{BH} increases as \sqrt{s}

semi-classical BHs formed when $M_{BH} \geq 3M_D$

But proton PDFs fall rapidly with increasing $s \Rightarrow \sigma_{BH}$ largest at lowest masses

“LHC will only see QBHs not semi-classical BHs”

Semi-classical BHs may tell us nothing about quantum gravity (QG)

QBHs could allow us to probe different models of QG
Quantum Blackholes

QBHs → even less known territory!
No idea of production cross section → assume geometric cross section
A “true” BH probably doesn't form i.e. no event horizon

Close to threshold: $M_{\text{BH}} \sim M_D$ gravity is strongly coupled → non-perturbative
QBH is more like a resonance / bound state
entropy is small
difficult to describe BH in terms of entropy / temperature
expect high multiplicity decay states to be strongly suppressed
unlikely to decay thermally

Thus, expect modifications to Standard Model 2 → 2 scattering
(interference effects not accounted for...)

Ignore spin effects for QBHs:
r_s and impact parameter b are both $\sim 1/M_{\text{BH}} \Rightarrow J \sim 1$
Quantum Blackholes

15 different types of QBH in pp collisions depending on initial parton combination

\[q q \quad q g \quad g g \quad \bar{g} g \quad q \bar{q} \quad \bar{q} q \]
Much is still missing in the phenomenology of quantum BHs
no real treatment of spin
brane tension
no interference effects accounted for
production cross sections assumed to extrapolate from semi-classical regime

Starting to see string theory motivated predictions of measurable cross sections
regime of low string mass scales \sim TeV and weak coupling

Anchordoqui et.al. arXiv:0808.0497v3

Neutrinos have mass \Rightarrow TeV scale gravity can democratically couple to
... left / right handed neutrinos
... heavy sterile neutrinos
Quantum Blackholes

Published with full 2010 dataset

Compare the di-jet mass spectrum with QCD
QBHs produce threshold effects
Large cross section close to threshold
Long tails to larger masses

Meade-Randall QBHs excluded at 95% CL
for $M_D < 3.67$ TeV (n=6)
String theory may be a candidate theory for quantum gravity. It requires 6-7 extra spatial dimensions. String balls, which are high entropy low mass string states, are thought to be BH progenitors.
Summary

- TeV scale gravity can potentially address many shortcomings of SM
- No fundamental theory yet - but very rich phenomenology!
- Large parameter space to be explored
- Some models do appear contrived...
 ... but nature is weird (who could have predicted quantum mechanics?)
- Nevertheless, we should look because we can!
- The 'holy grail' of quantum gravity may be experimentally within reach

"The landscape is magic, the trip is far from being over"

Carlo Rovelli
Quantum Gravity
STRING THEORY SUMMARIZED:

I JUST HAD AN AWESOME IDEA.
SUPPOSE ALL MATTER AND ENERGY
IS MADE OF TINY, VIBRATING "STRINGS."

OKAY. WHAT WOULD
THAT IMPLY?

I DUNNO.

© xkcd.com
BlackMax prediction for non-rotating BHs

Dai et al: arXiv 0711.3012

Cross sections vary by ~ factor 10 for n = 1 → 7
Factor ~30 suppression for $M_D = 1 → 3$ TeV
LHC Signatures

Multiplicity of particles by type in different models

Higher multiplicity for larger mass
Quasi-democratic decays - fewer tops due to energy-momentum constraints
More particles than anti-particles due to pp initial state
LHC Signatures

Missing E_T spectrum

Alternative selection: $E_T > 500$ GeV

Largely from graviton emission in balding and Hawking phases

Compare:
- SUSY models at 3 different scales
- Soft SM expectation

But:
- Difficult to calibrate
- Limits M_{BH} measurement