
m.bona@qmul.ac.uk 1

HEP Computing
Part I

Intro to UNIX/LINUX
Marcella Bona

Lectures 1,2,3

 Adrian Bevan

m.bona@qmul.ac.uk 2

Lecture 1

• Files and directories.

• Introduce a number of simple UNIX commands for
 manipulation of files and directories.

• communicating with remote machines

m.bona@qmul.ac.uk 3

What is LINUX

● LINUX is the operating system (OS) kernel.
● Sitting on top of the LINUX OS are a lot of utilities that help you do

stuff.
● You get a ‘LINUX distribution’ installed on your desktop/laptop. This

is a sloppy way of saying you get the OS bundled with lots of useful
utilities/applications.

● Use LINUX to mean anything from the OS to the distribution we are
using.

● UNIX is an operating system that is very similar to LINUX (same
command names, sometimes slightly different functionalities of
commands etc).
– There are usually enough subtle differences between LINUX and UNIX

versions to keep you on your toes (e.g. Solaris and LINUX) when
running applications on multiple platforms …be mindful of this if you use
other UNIX flavours.

– Mac OS X is based on a UNIX distribution.

m.bona@qmul.ac.uk 4

Accessing a machine

• You need a user account
 you should all have one by now

• can then log in at the terminal
 (i.e. sit in front of a machine and type in your
 user name and password to log in to it).

• you can also log in remotely to a machine somewhere else

SLAC

CERN

FNAL

in2p3

RAL

London

m.bona@qmul.ac.uk 5

directory path

prompt

The command line
● A user interfaces with Linux by typing commands into a shell.

– if you are familiar with windows then think of a shell being
something like the DOS prompt.

● The shell is a program that knows how to find commands to run
and how to run them.

m.bona@qmul.ac.uk

m.bona@qmul.ac.uk 6

ls <dir> list the content of a directory
cd <dir> change directory to the specified one
mkdir <–p> <dir> make a new directory (–p makes missing parents)
cp <file> <newfile> make a copy of a file
mv <file name> <new file name> rename a file
tail <file> look at the end of a file
head <file> look at the start of a file
cat <file> show the file from start to finish on the terminal
more <file> file viewer
less <file> file viewer (more versatile than more)
sleep <nSeconds> sleep for a number of seconds before continuing
gzip <file> zip a file up
tar cvf somefile.tar <directory> make a tar file (archive files or directory trees)
tar xvf somefile.tar unpack a tar file
tar cvzf somefile.tgz <directory> make a tar file and zip it up in one go
tar xvzf somefile.tgz unpack a zipped tar file

Some useful commands
(these and more get introduced by example in the following pages)

m.bona@qmul.ac.uk 7

• Files and directories are stored on a file system.

• the root file system starts at /

• sitting in this are many different directories
 e.g. you can see what is there using ls

somehost ~ > ls /
afs/ bin/ data/ home/ lost+found/ opt/ root/ u01@ u04@ usr/
afscache/ boot/ dev/ initrd/ misc/ pippo/ sbin/ u02@ u05@ var/
bfactory@ cern@ etc/ lib/ mnt/ proc/ tmp/ u03@ u06@

• Directories are organised in a hierarchical structure
  a / separates one directory level from the next [c.f. \ in Windows]

• e.g. /usr/bin is the subdirectory bin that is
 in the sub directory usr found in /

• You have a home directory that can be access via ~username
 e.g. ~smith or ~/ for short

Files and directories

m.bona@qmul.ac.uk 8

• make a new directory with the mkdir command
mkdir test

• list the files in a directory using the ls command
ls test

• change into the directory you just made using the cd command
cd test

• can now make another directory
mkdir test2

• now if you list the files in the directory test (type ls) you’ll see
test2

 which you just made. You can then rename the new directory with
mv test2 test3

 and using ls again you can see that
 the new directory is now called test3

Manipulating files and directories

m.bona@qmul.ac.uk 9

mkdir test

ls test

cd test

mkdir test2

mv test2 test3

./

./ ./test

./ ./test
./test/test2

./ ./test
./test/test3

(sub)directories:

directory
renamed

m.bona@qmul.ac.uk 10

• What if you get lost and want to go home?

cd
cd ~/
cd $HOME

• How can you tell which directory you are currently in?

pwd

• Is there an easy way to go to the previous directory?

cd –

• How do I get to one directory down the tree?

cd ../

All are equivalent and will take you
to your home directory (the one you
appear at when you log in)

Manipulating directories and files (II)

m.bona@qmul.ac.uk 11

• You already have a file called ~/.bash_profile which is one of
 your login scripts. How can you look at this file?
 If you just ls in your home directory it is not there …

ls –a
 will show the hidden files (names starting with a ‘.’)

• cd to your home directory [if you are in a subdir using cd will take you home]
• try to use the commands cat, tail, head, more and less
 to look at the file .bash_profile

cat .bash_profile # print the file to the screen
head .bash_profile # print the first 10 lines
head -20 .bash_profile # print first 20 lines
tail .bash_profile # print last 10 lines
tail -30 .bash_profile # print last 30 lines
more .bash_profile # use more to look at the file
less .bash_profile # use less to look at the file

Looking at the content of a file

m.bona@qmul.ac.uk 12

cat .bash_profile # print the file to the screen
head .bash_profile # print the first 10 lines
head -20 .bash_profile # print first 20 lines
tail .bash_profile # print last 10 lines
tail -30 .bash_profile # print last 30 lines
more .bash_profile # use more to look at the file
less .bash_profile # use less to look at the file

N.B. use ‘q’ in more or less to quit and return to the command prompt
 in less you can use the up and down arrows

 to move through the file
 / followed by a string entered into less

 will search for that string
 ? followed by a string entered into less will search

 backwards for that string

Looking at the content of a file (II)

m.bona@qmul.ac.uk 13

1. try using the commands described on the last few pages to get familiar
with them

2. play with the sleep command type
> sleep 5

then
> sleep 10; mkdir iJustWokeUp

 (include the semi-colon, ‘;’ after sleep 10). You see that you can use sleep to
delay execution of a command. ‘;’ is a command separator for the shell

• copy .bash_profile to the directory test that you made earlier
> cp .bash_profile test/
> ls –a test/ # use –a to see hidden files

 # (these start with a .)
bfa ~/ > ls -a test
./ ../ .bash_profile

current directory directory one up from the subdirectory test

copy of your .tcshrc

Exercise

m.bona@qmul.ac.uk 14

a.j.bevan@qmul.ac.uk 14

 Some group machines may use telnet and ftp for communication (login and copy).

> telnet somemachine.somedomain
> telnet MyComputer.MyUni.ac.uk

> ftp somemachine.somedomain
> ftp MyComputer.MyUni.ac.uk

 Almost all machines you will encounter will not use these programs.
 Instead you need to use ssh/scp to login or copy a file to a new machine.

> ssh <options> somemachine.somedomain
> ssh MyComputer.MyUni.ac.uk

> scp <options> <source> <target>
> scp test.eps MyComputer.MyUni.ac.uk:./myEpsFiles/

 where <options> are command line options that you can type in if you want to.
 [N.B. the angled brackets are not to be input but indicate that this is an option]

ftp is generally discouraged.
It’s a good idea not to use it!

Communicating between different machines

Local File Remote Host file path on remote host

m.bona@qmul.ac.uk 15

Example of using ssh to log into a machine

> ssh –l username hostname.MyUni.ac.uk
> ssh username@hostname.MyUni.ac.uk
> ssh hostname.MyUni.ac.uk

Example of using scp

 > scp test.ps username@hostname:./public_html/

 > scp –r test-dir username@hostname:./public_html/

Equivalent forms of using
the command. N.B. if you
don’t specify the username
it will be assumed that you
want to use your for the
connection.

copy a single file to a subdirectory on another machine

recursively copy a directory to another machine

So why do/should you care?

  most … if not all … of your work will be done at remote machines

Logon and copy examples:

m.bona@qmul.ac.uk 16

Lecture 2

• Text Editing

• sed and awk

• Environment variables and aliases

• Archiving files

m.bona@qmul.ac.uk 17

Text editing

Some UNIX Text Editors:
(x)emacs nice gui/text based editor – most people use this
vi very useful for sysadmin/minimal system work
pico, vim, …

EMACS:
to start emacs:

> emacs <somefile> & to start a gui emacs session
> emacs –nw <somefile> to start a text session

 Useful resources can be found:
GNU’s online manual

http://www.gnu.org/manual/manual.html
man pages give a summary of information
emacs help  enter this by opening emacs and pressing F1 twice

As soon as you want to start to do analysis/write reports etc … you need to
edit files. There is nothing like word available for editing code so you have
to learn how to use a text editor.

 &=run in background

m.bona@qmul.ac.uk 18

Some of the emacs commands you should know:

[ctrl-x]+f open a file
[ctrl-x]+i insert a file
[ctrl-x]+s save a file
[ctrl-x]+[ctrl-c] close emacs
[alt-x]+ispell-buffer run ispell from emacs
[alt-x]+spell-region run ispell from emacs
[alt-x]+goto-line go to line #
[ctrl-x]+(start defn. of a macro
[ctrl-x]+) close dfn of a macro
[ctrl-x]+e execute a macro
[ctrl-x]+ u # repeat next command # times
[alt-x]+query-replace replace string with another one

Aside: On mac OS you need to
replace Alt with Esc

Some emacs

m.bona@qmul.ac.uk 19

a b c d e f g
a b c d e f g
a b c d e f g
a b c d e f g
a b c d e f g

[ctrl-space] mark the start of a region
[ctrl-x]+r+k mark the end of a region and kill it
[ctrl-x]+r+y paste a region

a b c d e f g
a g
a g
a g
a b c d e f g

e.g. of editing a region

There are MANY more commands available
these are just the ones that I use most often

Some more emacs

m.bona@qmul.ac.uk 20

• Open an emacs session and start typing into the file;

emacs –nw test.txt

• When you have some text, save the file

[ctrl-x]+s

• then close the file using

[ctrl-x]+[ctrl-c]

• you should now have a file test.txt – you can see it is there by
using the ls command

ls -l test.txt

• now you can try using less or more to view the file:

less test.txt

Emacs examples

m.bona@qmul.ac.uk 21

• if you now open a new file called test2.txt, you can insert the
original file using

[ctrl-x]+i followed by test.txt

 if you want to play about with the file some more you can do so.
Then save test2.txt using

[ctrl-x]+s.

 Try using the [alt-x] query-replace command to change
all of the letters ‘a’ for ‘X’ in what you have written

you are prompted for the strings to match and can either approve the
change on a one by one basis or do all at once using !

• you should play around for a while with the various commands
listed on the previous page to get used to things a bit.

Emacs examples (II)

m.bona@qmul.ac.uk 22

The file is empty
until you save it

emacs –nw test.txt

Enter a few lines of text
into the terminal

[ctrl-x]+s

m.bona@qmul.ac.uk 23

The file is not updated
until you save it

emacs –nw somefile.txt

Move the cursor to the end of
somefile.txt and try to add the
content of another file to this one

[ctrl-x]+s

[ctrl-x]+i
followed by
test.txt

Make a new file called somefile.txt, and edit your original

m.bona@qmul.ac.uk 24

sed and awk

Some useful examples:
sed –e ‘s/A/B/’ <filename> substitute A for B in 1st instance

on line in the whole file
sed –e ‘s/A/B/g’ <filename> substitute A for B in whole file

awk ‘{print $1}’ <filename> print the first column of file [space
separator used by default]

awk –F’=’ ‘{print $1}’ <filename>
use the ‘=‘ character as a separator

awk ‘{s+=$1}END{print “sum = “ s}’ <filename>
add up the numbers
in the first column

 try to use sed and awk on test.txt and test2.txt.

Look at the GNU manuals for gawk & search on google for awk/sed
O’Reilly “sed & awk” is a good book to read

These are command line text editing utilities to help process information
involving replacement of strings/extracting columns of text from files etc.

m.bona@qmul.ac.uk 25

sed ’s/the/THE/g’ test.txt replace ‘the’ with ‘THE’

sed ’s/the/THE/’ test.txt replace the first ‘the’ per line
with ‘THE’

awk ’{print $1}’ test.txt print the first word on each line

echo "hello world" | sed ’s/world/universe/’
substitute world for universe
in print out

sed and awk can do a lot more than shown here …
see extra material for a few ideas

Some simple examples

m.bona@qmul.ac.uk 26

grep <string> test.txt > myStringFile

./myBin >& myBin.log &
 tail –f myBin.log

cat file2 >> file1

export MYVAR=val; ./myBin >& mylog & tail –f mylog

ls /usr/local/bin/?v*

search for <string> in the file and
redirect the output to a file called myStringFile

run the binary – writing to a log file (passing
stdout and stderr to that log file) and then follow
the tail of the log file as it gets written out

append the content of file2 at the end of file1

do several things on one line

e.g. pattern a search for binaries with
a single character followed
by a ‘v’ and finishing with anything else.

Some more UNIX command line examples

m.bona@qmul.ac.uk 27

rm <aFile>

check how much free space you have
left on an afs file system

now you’ve seen the rm command, you know how to delete things
 you might want to use the following until you get more confident

rm –i <aFile>

to remove the file aFile. Deleting a file
on LINUX/UNIX means that it has gone!

• Note that the work areas you have and use are generally not backed up.

• if you have something that is important (e.g. thesis) you should ask how
to make back up copies on a regular basis (if you don’t know how to do it)
so that you don’t loose everything if you accidentally delete the original or
a hardware failure looses the disk etc.

• At outside labs there is usually a copy of your home area backed up
once a day: check if this exists and if the backup it suits your needs.

[somehost] ~ > fs lq
Volume Name Quota Used %Used Partition
u.bona 500000 454441 91%<< 68% <<WARNING

Some more commands

m.bona@qmul.ac.uk 28

There are many so called environment variables set in a shell.
To list these type

printenv tcsh/sh
env tcsh/sh

The most important one is:

PATH set the search path for commands so the system knows
where to look for them. This is the search path that a
shell uses to find a command. If a command is not in
one of the directories listed in $PATH then you have to
refer to it using the full path name e.g.

/usr/bin/perl
instead of perl

How do you know if you can see a command? Use which to search for it.
If the shell can find a command by looking through the locations in $PATH
it returns the one it finds first. e.g.

somehost ~ > which perl
/usr/bin/perl

Environment Variables

m.bona@qmul.ac.uk 29

export myVar=value

variable name value

echo $PATH

command to
print something
to the screen

the value of the PATH
environment variable is
accessed by prefixing
PATH with $

unset myVar

to set an
environment
variable

to inspect an
environment
variable

to delete/unset
an environment
variable

Using environment variables

m.bona@qmul.ac.uk 30

Sometimes you want to append to an existing variable, e.g. PATH.
You can do this like

export PATH=<new path to add>:$PATH

• command not found means just that – the system can not find
 the command when searching the directories listed in $PATH

These examples are for sh. For the tcsh they differ slightly and I’ll leave it
to you to find out how to manipulate the environment variables there.

A few other useful variables are:
EDITOR set the default text editor
PRINTER the default printer (what lpr will try to

print to unless you tell it otherwise)
PAGER e.g. set more or less as the default pager

e.g.
export EDITOR=emacs
export PAGER=less
export PRINTER=oa2

m.bona@qmul.ac.uk 31

An alias is a command short cut that you can specify.
These usually go into your login scripts such as .cshrc/.tcshrc etc
e.g.

alias rm='rm –i'
alias ls='ls –F'

you can see the list of aliases by typing alias at the command line:

alias clean='rm *~'
alias l.='ls -d .* --color=tty'
alias ll='ls -l --color=tty'
alias ls='ls -l'
…

This can be useful so that you don’t have to type in the full command
to ssh to an outside lab all the time, or to customize your setup as you like.

rm –i prompts you to confirm
you want to delete something

Aliases

m.bona@qmul.ac.uk 32

• List the environment variables already set for you.

• Check the variables EDITOR, PAGER and PRINTER.
 Are these defaults ok? if not change them: e.g. I have

• Could have just echo(ed) the variables instead.

[somehost] ~ > env | grep EDITOR
EDITOR=vi
[somehost] ~ > env | grep PAGER
PAGER=less
[somehost] ~ > env | grep
PRINTER
PRINTER=oa1

Ask a local what the
names of your printers are

you probably want emacs

• Make a directory called scripts and add this to your PATH.
 You’ll use this later on.

Examples

m.bona@qmul.ac.uk 33

• You can compress files to save space. The gzip/gunzip commands
 are used to zip/unzip files. Large savings in space can be had in
 compressing ascii files … on the other hand sometimes binary files are
 packed so efficiently that you don’t get any gain from using these utilities
 to compress those files.

• use ls –l to see how big a file is
 (ls –lh shows the file size in Kb/Mb/Gb)

• e.g. compressing a single file
gzip thesis.ps

 this command will write a compressed file called thesis.ps.gz
 that should be a lot smaller than the original thesis.ps

• you can then unzip the file by using
gunzip thesis.ps.gz

• This can be quite handy if you have very limited disk space
 (e.g. at SLAC/CERN etc)

Compressing files and directories

• what about dealing with the content of a directory tree?

m.bona@qmul.ac.uk 34

• If you have a lot of files that you want to store you can make an archive
before moving/compressing them. The most common utility you will see
for this is called tar. The name comes from the historical origin
as a Tape ARchival program.

• Other programs exist such as dd & cpio etc.

• to make an archive of the directory test
cd # return to your home directory
tar cvf test.tar test/ # make the archive file

• you should now have a file called test.tar in your home directory that
 can be compressed using gzip. To unpack the archive in a new directory

mkdir new-test
cd new-test
cp ~/test.tar .
tar xvf test.tar # unpack the archive in ~/new-test

 so new-test now contains a complete copy of the directory tree test

here the destination is the current directory

Archiving files

m.bona@qmul.ac.uk 35

What did the options given to tar mean???

c create an archive file
v verbose (print out files added/extracted from the “tarball”)
f file – the f option should be followed by the name of the

file to create
x extract files from the archive.

tar cvf test.tar test/

if you use the option ‘z’ when using tar, you can compress the archive at
the same time as making it. e.g.

tar zcvf test.tgz test/
tar zxvf test.tgz

• So How are you supposed to know all of this for the different commands?

archive file
to create

directory to archive

m.bona@qmul.ac.uk 36

• system commands usually come with man pages
 these are instructions on how to use the command.
 e.g. type the following to look at the ls man page

> man ls NAME
 ls - list directory contents

SYNOPSIS
 ls [OPTION]... [FILE]...

DESCRIPTION
 List information about the FILEs (the current directory by
 default). Sort entries alphabetically if none of -cftuSUX
 nor --sort.

 -a, --all
 do not hide entries starting with .

 -A, --almost-all
 do not list implied . and ..

 -b, --escape
 print octal escapes for nongraphic characters

If you are not sure of a command name you can always try using
man –k followed by a search string to see if any matches might exist;
 e.g. type man –k copy

Man Pages

m.bona@qmul.ac.uk 37

find . -name core

locate core

Sometimes you will loose track of where a particular file is. Either
you are looking for something you have written, or something that
you’ve been asked to find. There are two useful utils for tracking
down files:

set the path to start searching

name the file/string you are looking for

locate uses a database of files that is automatically
updated on a LINUX machine so it is usually a lot
quicker than using find to locate a file (unless you have
made the file AFTER the db was last updated).

Finding files

m.bona@qmul.ac.uk 38

1. Try following the examples on using gzip and tar to compress and
archive the dummy directory

2. If you’ve not already done so, download the example tgz files and
unpack these in your home directory. Look at the content of ~/Lectures
for each new examples file you add.

3. Run the command
 du –sh ~/Lectures

 to see how much disk is used in total and compare this with the sum of
 file sizes for partN_examples.tgz that you’ve unpacked using ls –lh

[N.B.] most of the space is taken up by root files that are already
compressed so the reduction in size is not great for part3_examples.tgz.

4. Look at the man pages for some of the commands you now know.
 HINT: the commands you know now do a lot more than you have learnt

about so far. Details on the man page tell you what else they can do …
sometimes the description isn’t that easy to follow!

5. If you’re happy with this – look at the extra material

Exercise

m.bona@qmul.ac.uk 39

Lecture 3

• Review the relationships between the most important concepts
 and commands covered in the lectures 1 and 2.

• Introduce web resources available.

m.bona@qmul.ac.uk 40

It’s a good idea that you make yourself familiar with the behavior of these
Commands and know how to use them if you’ve not done so yet.

Most of what you will do with computers is, in essence,
manipulating information in files. These commands
cover a range of ways to look at the content of files
and edit them.

Command Relationship Summaries

file

emacs

less

more
cat

head

tail

m.bona@qmul.ac.uk 41

emacs –nw newFile.txt

Most of what you will do with computers is, in essence,
manipulating information in files. These commands
cover a range of ways to look at the content of files
and edit them.

file

emacs

less

more
cat

head

tail

m.bona@qmul.ac.uk 42

less newFile.txt

Most of what you will do with computers is, in essence,
manipulating information in files. These commands
cover a range of ways to look at the content of files
and edit them.

file

emacs

less

more
cat

head

tail

m.bona@qmul.ac.uk 43

more newFile.txt

Most of what you will do with computers is, in essence,
manipulating information in files. These commands
cover a range of ways to look at the content of files
and edit them.

file

emacs

less

more
cat

head

tail

m.bona@qmul.ac.uk 44

cat newFile.txt

Most of what you will do with computers is, in essence,
manipulating information in files. These commands
cover a range of ways to look at the content of files
and edit them.

file

emacs

less

more
cat

head

tail

m.bona@qmul.ac.uk 45

tail newFile.txt
tail -100 newFile.txt

Most of what you will do with computers is, in essence,
manipulating information in files. These commands
cover a range of ways to look at the content of files
and edit them.

file

emacs

less

more
cat

head

tail

m.bona@qmul.ac.uk 46

head newFile.txt
head -100 newFile.txt

Most of what you will do with computers is, in essence,
manipulating information in files. These commands
cover a range of ways to look at the content of files
and edit them.

file

emacs

less

more
cat

head

tail

m.bona@qmul.ac.uk 47

directory

mkdir

cd

ls

rmdir

du -sh

Very Quickly you will see that a structured system
for storing files is needed  you need sub-directories.
These commands are useful to manipulate your
directories.

m.bona@qmul.ac.uk 48

mkdir –p src/myTest/

directory

mkdir

cd

ls

rmdir

du -sh

Very Quickly you will see that a structured system
for storing files is needed  you need sub-directories.
These commands are useful to manipulate your
directories.

m.bona@qmul.ac.uk 49

rmdir myTest/

directory

mkdir

cd

ls

rmdir

du -sh

Very Quickly you will see that a structured system
for storing files is needed  you need sub-directories.
These commands are useful to manipulate your
directories.

m.bona@qmul.ac.uk 50

du –sh `pwd`

directory

mkdir

cd

ls

rmdir

du -sh

Very Quickly you will see that a structured system
for storing files is needed  you need sub-directories.
These commands are useful to manipulate your
directories.

m.bona@qmul.ac.uk 51

ls –l src/myTest/

directory

mkdir

cd

ls

rmdir

du -sh

Very Quickly you will see that a structured system
for storing files is needed  you need sub-directories.
These commands are useful to manipulate your
directories.

m.bona@qmul.ac.uk 52

cd src/myTest/

directory

mkdir

cd

ls

rmdir

du -sh

Very Quickly you will see that a structured system
for storing files is needed  you need sub-directories.
These commands are useful to manipulate your
directories.

m.bona@qmul.ac.uk 53

patterns

grep

sed awk

When manipulating files there will come a time when
you want to look for a string or pattern, and either
extract or modify it. Basic use of these commands can
save enormous amounts of time with repetitive tasks.

m.bona@qmul.ac.uk 54

grep Hello helloWorld.pl
grep –i hello helloWorld.pl

patterns

grep

sed awk

When manipulating files there will come a time when
you want to look for a string or pattern, and either
extract or modify it. Basic use of these commands can
save enormous amounts of time with repetitive tasks.

m.bona@qmul.ac.uk 55

sed –e
 ‘s/hello/HELLO/’
 helloWorld.pl patterns

grep

sed awk

When manipulating files there will come a time when
you want to look for a string or pattern, and either
extract or modify it. Basic use of these commands can
save enormous amounts of time with repetitive tasks.

m.bona@qmul.ac.uk 56

awk ‘{print $1}’ helloWorld.pl
awk –F ‘/’ myDirList.txtpatterns

grep

sed awk

When manipulating files there will come a time when
you want to look for a string or pattern, and either
extract or modify it. Basic use of these commands can
save enormous amounts of time with repetitive tasks.

m.bona@qmul.ac.uk 57

Available Resources

● If you are stuck with a problem there are several
resources available to you:
– collaborators in your group or on your experiment.
– books: library, colleague's bookshelf etc.
– web resources:

● www.google.co.uk is surprisingly good in helping you find
useful technical websites.

● An alternative is cetus-links (URL on next page)

m.bona@qmul.ac.uk 58

Remember the link

This website contains links to beginner and advanced web based resources
on most programming languages you might want to use (except FORTRAN)

m.bona@qmul.ac.uk 59

Before moving on from this introduction, here is a biased opinion of what
is worth knowing:

C, C++, some FORTRAN perl, tcsh and bash a debugger

coding your analysis
automation when running analysis,
job submission and automation of
tedious repetitive tasks

finding bugs

Along the way you may also learn a bit about design patterns and Object
Orientated programming.

If you do, don’t worry about good design to begin with just learn the
syntax. When you know this then you’ll start to pick up what is good
and what is bad. Writing ‘good code’ takes a long time … so be patient
and don’t worry too much about making mistakes when you are learning.

Code Development

m.bona@qmul.ac.uk 60

You’ll find some material on the following topics in the extra material

- more complicated uses of sed

- Some jargon you’ll encounter

- Writing your own Makefile

- Simple use of a debugger to identify null pointers

Extra Material for Part 1

	HEP Computing Part I Intro to UNIX/LINUX Adrian Bevan
	Lecture 1
	What is LINUX
	Slide 4
	The command line
	Some useful commands
	Files and directories
	Manipulating files and directories
	Slide 9
	Manipulating directories and files (II)
	Looking at the content of a file
	Slide 12
	Exercise
	Communicating between different machines
	Logon and copy examples:
	Lecture 2
	Text editing
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	sed and awk
	Some simple examples
	Some more UNIX command line examples
	Some more commands
	Environment Variables
	Using environment variables
	Slide 30
	Aliases
	Examples
	Compressing files and directories
	Archiving files
	Slide 35
	Man Pages
	Finding files
	Slide 38
	Lecture 3
	Command Relationship Summaries
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Available Resources
	Slide 58
	Code Development
	Extra Material for Part 1

