
m.bona@qmul.ac.uk 1

HEP Computing
Part III
ROOT

Marcella Bona

HEP Computing
Part III
ROOT

Marcella Bona

Lectures 5-6

 Adrian Bevan

m.bona@qmul.ac.uk 2

Aims of this part of the courseAims of this part of the course

• set up the ROOT environment on your own machine
• start root and run a simple macro
• know how to use histograms, ntuples, files etc …
• know where to go for more information
• fit to histogram data
• compile a stand alone root application
• Write a script to process a macro on several root files – i.e. learn

how to automate ‘chores’
• Learn about more root based tools – functions, binned fits in root

and automatic code generation

The aim of this section is to give you a crash course in using ROOT.
By the time you’ve worked through this you should be able to:

This set of lectures has been tested for ROOT >= 5.27

m.bona@qmul.ac.uk 3

Lecture 5Lecture 5

• Getting started with using ROOT.
● ntuples
● histograms
● macros

• TFiles  saving data
• Using histograms and trees
• simple ROOT macros

m.bona@qmul.ac.uk 4

• What is ROOT?
C++ based, code on the web, actively developed by many people,
don’t need to learn another syntax to use it (root macros are C++)

 flexibility brings complexity 
 manual is large (over 300 pages)
 some good web based courses available as well

• Useful resources:
● User Guide etc:

http://root.cern.ch/
● HOW-TOs, Tutorials and class structure on web 

 (some tutorials listed in the references at end)

ROOTROOT

download root from here

m.bona@qmul.ac.uk 5

• Histograms
● Plots of data as a function of 1, 2 or 3 variables

• NTuples
● A more complicated data format

● store information on an event or candidate basis
● can cut on other variables in NTuple to do analysis on the fly
● based on a tree-like data structure

• Files
● The persistent data type
● Persistent objects inherit from TObject
● Can persist user defined objects if they inherit from TObject

• macros
● Source file containing command to execute in the interpreter

• GUIs
● Don’t always need to know how to do things on the command
line!

Some basic conceptsSome basic concepts

m.bona@qmul.ac.uk 6

1, 2 and 3D binned plots of the distribution of variables – good for
visualising what analysis cuts do to data/complicated functions:

types
TH1F TH1D
TH2F TH2D
TH3F TH3D

 the F/D refers to the data type used
 either Float_t or Double_t
If you have a histogram called myHist
 and want to see what it looks like you
 Draw() it

root[10] myHist.Draw()

Draw() member function is
called to show the histogram

The histogram object with
variable name myHist

the root prompt

histogram shown as data points with background
curves added on top of the histogram

HistogramsHistograms

m.bona@qmul.ac.uk 7

‘Flat File’ is jargon for a formatted text files containing columns of
numbers corresponding to variables.
e.g. a 3 column flat file would look something like:

5.285 0.02 5.43
5.273 -0.12 4.32
…

where you have the advantage of being able to read the numbers by
eye as well as using them in code/scripts etc. (most people can’t
read binary too well…)

You may see flat files knocking around from time to time

Flat Files

1 row corresponds to a
candidate or an event

a column corresponds to a variable

Flat FilesFlat Files

m.bona@qmul.ac.uk 8

• data structure on an entry by entry basis (e.g. candidate or event)
TTree/TChain – the same kind of thing – both are NTuples

You can
● loop over the events one by one to analyse data
● draw variables or combinations of variables
● cut on variables as you draw them
● fill histograms of anything that you can draw

• NTuples are a lot more flexible than histograms as you can optimize
your analysis once you’ve made the ntuples  you don’t have to do
this before making them
  i.e. you make a few root files by running on all of the experimental
data you need, using loose cuts and then work on this subset of
data/variables.

NTuplesNTuples

m.bona@qmul.ac.uk 9

The first part of the ROOT tutorial uses Monte
Carlo data from a BaBar analysis to introduce

the basics of using histograms, files and ntuples
in root. The examples lead to you developing a
scaled down version of what you would do in a

cut and count analysis.

Starting with ROOTStarting with ROOT

This tutorial concentrates on using ROOT with LINUX. There are
pointers to differences between LINUX and mac, but the use of
Windows is beyond the scope of these Lectures.

m.bona@qmul.ac.uk 10

ROOT is a data analysis toolkit that has one main application

root the main program that you run

• You need to append $ROOTSYS/bin to your PATH in order for your
shell to know where to find the command root (see the next page).

• You also need to modify LD_LIBRARY_PATH so that the shell can find
the shared libraries it needs at run time (see the next page) in case you
decide to start compiling your ROOT analysis code at a later date.

• ROOT (sort of) uses C++ syntax:
● If you compile your code you need to be precise with C++ syntax.
● If you interpret your code (using CINT, it is CLING in root6), then
you don’t have to be as precise.
● For the longer term, you should seriously consider compiling your
code, however CINT is great for trying things out and learning!
●There are a few limitations with CINT that you may encounter (e.g.
templates)

What is ROOT?What is ROOT?

N.B. mac users need to set the DYLD_LIBRARY_PATH

m.bona@qmul.ac.uk 11

e.g. Setting up the ROOT environmente.g. Setting up the ROOT environment

You (or your sys-admin) needs to have installed a version of root and to set
the following environment variables:

● ROOTVER – the version number (not strictly necessary)
● ROOTSYS – The ROOT installation directory
● LD_LIBRARY_PATH – where the system looks for libraries
● you also need to append your path with the ROOT bin directory

export ROOTVER=5.27.00
path to root install directory. This will depend on your sysadmin

export ROOTSYS=/users/bona/root/$ROOTVER
export PATH=$PATH:$ROOTSYS/bin:$MYPATHVAR
export LD_LIBRARY_PATH=$ROOTSYS/lib:$LD_LIBRARY_PATH
on Mac OS X you’ll want to comment out the previous line and
uncomment the following.
#export DYLD_LIBRARY_PATH=$ROOTSYS/lib:$DYLD_LIBRARY_PATH

If you use bash add the following to your .bash_profile.

• run $ROOTSYS/bin/thisroot.sh to set-up a specific root version
• llog into a new terminal to see that your shell now knows about root.

m.bona@qmul.ac.uk 12

Running ROOTRunning ROOT

• root start a root session
-l suppress the ‘splash screen’

The splash screen is the window that pops up
for a few seconds when you start root. By
suppressing this you start root a little faster.

-b run in batch mode [no graphics displayed]
This will speed things up a lot (especially if you
are working from a remote machine).

-q quit root when macro finished
root –l –b –q myMacro.cc(“arguments”)

• Can open a ROOT file when starting a session:
root myfile.root

m.bona@qmul.ac.uk 13

A few words on CINT/CLINGA few words on CINT/CLING

• Based on C++
• Is a C++ interpreter
• Can do things wrong sometimes (solution is to compile code)

• you won’t get warnings when it does 
• prime example is if you forget ‘;’ at the end of a line in a macro

the whole line is just ignored!
• Some people say that ‘ROOT needs to be restarted all the time’

• this is probably true if your code is not bug free!
• if you are bug free then it is not a problem…

• There are differences between CINT and C++ some are:
– Sloppy use of “->” and “.”

– these can be replaced with each other, however one gets
warnings in later versions of root if using the wrong syntax

– The “;” at the end of lines can be omitted in interactive use
(not when running with macros!)

– Can tab complete on an object in cint to see what it can do!

m.bona@qmul.ac.uk 14

CINT/CLING commandsCINT/CLING commands

• CINT/CLING commands always start with a dot “.”,
e.g:

.q quit out of ROOT session

.! <shellcommand> execute a shell command, e.g.

.! ls

.! emacs myMacro.cc &

.? help; get list of CINT commands

m.bona@qmul.ac.uk 15

ROOT Data TypesROOT Data Types

• Similar to C++:
– Basic types: first letter is capitalised and have suffix “_t”:

int  Int_t float  Float_t double  Double_t
– Names of root classes start with “T” e.g.

TDirectory, TFile, TTree, TH1F, TGraph, …

• Some ROOT types (classes):
– TH1F - 1D Histogram filled using floating precision data
– TH1D - 1D Histogram filled using double precision data
– TFile – a file containing persistent data
– TDirectory – a directory (useful to keep a TFile tidy/organised)
– TTree – can store per-event info in branches and leaves
– TF1 – 1-dimensional function, TF2, …
– TString – a ROOT string object (better than a C/C++ string)
– TObjString – a persistable root string

m.bona@qmul.ac.uk 16

Why care about the difference between
 Float_t and float?

int  Int_t
float  Float_t
double  Double_t

- The ROOT data types are used in order to make user code and
ROOT code more platform independent.

-You probably don’t care or need to worry about the details of this

- However, in general you should try and use the ROOT defined
types where possible

m.bona@qmul.ac.uk 17

Tab CompletionTab Completion

Tab-completion of commands and filename calls can help in finding
available commands, e.g.

TH1F h1(“h1”, “title”, 50, 0.0, 10.0);
 define a histogram with 50 bins and an x axis
range of 0.0-10.0

h1.[tab]
 lists all available functions of a TH1F object

TH1::[tab]
 list all available functions of a TH1 object

TH1::SetName([tab]
  show the available function prototypes e.g.

root [0] TH1::SetName([tab]
void SetName(const char* name) // *MENU*

so the syntax to change the name of this histogram is just:
h1->SetName(“myNewName”)

m.bona@qmul.ac.uk 18

Starting and exiting root

> root
root[0] .q
>

start up root by typing this at the shell prompt

quit root (remember this is CINT you are
 dealing with).

> root -l
root[0] TFile f1(“somefile.root”);
.
.
.
root[n] .q
>

do something

start up root by typing this at the shell
prompt & suppress the splash screen

m.bona@qmul.ac.uk 19

ROOT exercise 1: making sure you can use rootROOT exercise 1: making sure you can use root

• log onto a machine with root installed on it
• download and untar the examples for part 3:

these are unpacked in ./Lectures/macros/
• and cd into this dir.

• set up your root environment
• start a root session:

●root –l

e.g. copy the lines like those below
from the example on page 11.

• now you can play ….

ROOTVER  set as the root
version installed
ROOTSYS  this is the full path
to the install directory for root
LD_LIBRARY_PATH  like
PATH, but for compiled libraries

export ROOTVER=5.24.00
path to root install directory. This will depend on your sysadmin
export ROOTSYS=/Users/bevan/root/$ROOTVER

export PATH=$PATH:$ROOTSYS/bin:$MYPATHVAR
export LD_LIBRARY_PATH=$ROOTSYS/lib:$LD_LIBRARY_PATH

on Mac OS X you’ll want to comment out the previous line and
uncomment the following.
#export DYLD_LIBRARY_PATH=$ROOTSYS/lib:$DYLD_LIBRARY_PATH

root -l -b -q hello.cc'(”Yourname")'

m.bona@qmul.ac.uk 20

FilesFiles

A root file is known as a TFile. That is the class name for the object.
From your root prompt you can open the TFile data/signal.root using
(from Lecures/macros)

root[0] TFile f1("data/signal.root")

The content of the file can be seen by using the ls() member function:

root [1] f1.ls()
TFile** signal.root
 TFile* signal.root
 KEY: TH1D cossphericity;1 cossphericity
 KEY: TH1D photonlat;1 photonlat
 KEY: TH1D pi0mass;1 pi0mass
 .
 .
 KEY: TTree selectedtree;1 Final variables tree

persistence = save data (histogram, ntuple, object) in a file

m.bona@qmul.ac.uk 21

FilesFiles

a 1D histogram

a TTree object (an NTuple)key object type key name

object version number
comment

persistence = save data (histogram, ntuple, object) in a file

A root file is known as a TFile. That is the class name for the object.
From your root prompt you can open the TFile data/signal.root using
(from Lecures/macros)

root[0] TFile f1("data/signal.root")

The content of the file can be seen by using the ls() member function:

root [1] f1.ls()
TFile** signal.root
 TFile* signal.root
 KEY: TH1D cossphericity;1 cossphericity
 KEY: TH1D photonlat;1 photonlat
 KEY: TH1D pi0mass;1 pi0mass
 .
 .
 KEY: TTree selectedtree;1 Final variables tree

m.bona@qmul.ac.uk 22

you can also Print() and Dump() information about the content of a file

How do you get access to the persistent objects in a file? There are two
ways:

root [4] selectedtree
(const class TTree*const)0x852ff08

root [5] TTree * mySignalTree = (TTree*)f1.Get("selectedtree")

The second way is better as it will ALWAYS work for multiple open files –
you keep track of the pointers yourself and can do anything you want with
them! If you are only using a single file then you can use the first way to
access the stored objects when working interactively.

loads tree into memory
according to the key e.g.
 selectedtree

object type
 pointer

(you need the ‘*’ prefix)
cast the returned pointer

as the type you want
(assumes you know it)

The default is a TObject *

use the key
name to get
the object

m.bona@qmul.ac.uk 23

ROOT exercise 2
1) Open the files found in the Lectures tarball:

Lectures/macros/data/signal.root
Lectures/macros/data/continuum.root

 and look at the content of the file (use ls() member function of TFile).

2) get pointers to the TTrees in each file – Print() the content of one of
them [they are the same structure – so there is no point in looking at both
of them ]

3) draw some of the variables:
 hint – you can cut on variables when you draw them

mySignalTree->Draw(“aVar”);
mySignalTree->Draw(“aVar”, “aCut”, “same”)

 e.g.
mySignalTree->Draw(“mes”)
mySignalTree->Draw(“mes”, “abs(de)<0.2”, “same”)

• Do the same for a few histograms e.g.
root [4] pi0mass
(const class TH1D*)0x87a3df8
root [5] pi0mass->Draw()

can’t cut histograms

m.bona@qmul.ac.uk 24

Now you can
● set yourself up to use a given root version
● open a file in root
● access its content
● draw from TTrees and histograms (same works for TGraphs etc)

• The next part of the course is to write a macro that loops over the
events in a TTree and makes some cuts – filling histograms. These
histograms are then written out to a new file. Then you can compile the
code stand-alone and see it run faster.

• For now however I’ll go into more detail on histograms and TTrees as
we build towards this goal.

Q) Don’t like the grey background on the plots?
A) root [4] gROOT->SetStyle("Plain")
 will solve that problem for you.

should be
default in
newest versions

m.bona@qmul.ac.uk 25

HistogramsHistograms

 Declare with:
 TH1F h1(arguments …)

• Make your first 1D histogram:
 TH1F h1("h_name", "h_title", 10, 0.0, 10.0);

h_name = key name of histo
h_title = name which appears on plotted histogram

• Now draw the (currently empty) histo:
h1.Draw();

• Fill with a few entries:
h1.Fill(1.);
h1.Fill(3,10.7);

• Try drawing the histogram when you have a few entries
 h1.Draw(); //do this occasionally to update the histogram

nbins xmin xmax

x value to fill histogram at

the number to fill the histogram with
(default value is 1.0)

m.bona@qmul.ac.uk 26

Some useful commands to play with now that you’ve got a histogram

Line colours and styles are described in the 'Graphical Objects Attributes'
section of the ROOT user guide.

h1.SetFillColor(Color_t color = 1) Change the fill colour.
h1.SetFillStyle(Style_t styl = 0) Change the fill style.
h1.SetLineColor(Color_t color = 1) Change the line colour.
h1.SetLineStyle(Style_t styl = 0) Change the line style.
h1.SetLineWidth(Width_t width = 1) Change the line width.

kRed
kOrange
kYellow
kSpring
kGreen
kTeal
kCyan
kAzure
kBlue
kViolet
kMagenta
kBlack
kPink

Make sure you use
colours wisely! There is
nothing more annoying
than seeing a talk
projected onto a screen
with half a dozen
invisible lines!

Try and stick to 'safe'
colors like blue, red
and black.

Can define new colours using
the TColor class.

m.bona@qmul.ac.uk 27

Some useful commands to play with now that you’ve got a histogram

Line colours and styles are described in the 'Graphical Objects Attributes'
section of the ROOT user guide.

h1.SetFillColor(Color_t color = 1) Change the fill colour.
h1.SetFillStype(Style_t styl = 0) Change the fill style.
h1.SetLineColor(Color_t color = 1) Change the line colour.
h1.SetLineStyle(Style_t styl = 0) Change the line style.
h1.SetLineWidth(Width_t width = 1) Change the line width.

Remember to give axis labels a sensible title:

 always label your axes!

Available fill styles shown left

h1.SetXTitle("This is the x-axis")
h1.SetYTitle("This is this y-axis")

m.bona@qmul.ac.uk 28

The default line style is kSolid. There are times when you will want to
change this to another value (either by integer or enum):

kDashed
kDotted
kDashDotted

Sometimes it can be useful to mark points on a histogram using a TMarker.
There are various marker styles:

Which can be used as follows:
TMarker myMark(xCoord, yCoord, iStyle)
myMark.SetMarkerColor(kRed)
myMark.Draw()

where xCoord and yCoord are the coordinates to plot the marker at (in terms
of the histogram or graph), and iStyle is one of the marker styles above.

Same graphical attributes
modifiers as a histogram or line.

m.bona@qmul.ac.uk 29

It is also possible to change the range of the x-axis that you want to plot a
histogram for using

h1.SetAxisRange(xMin, xMax)
where xMin and xMax should be within the range defined in the constructor.

Why don't I see the changes I made to a histogram?
If you modify the settings of a histogram (or marker), you will need to redraw
the object in order for it to be updated on the TCanvas.

Overlaying more than one histogram on a plot
More than one histogram can be drawn on top of each other using
h1.Draw("same"). This only makes sense if the axes have matching
ranges.

Errors on a histogram:
Bin entries on a histogram are an accumulation of events occurring with a
probability according to a Poisson distribution.
If you use h1.Draw("e"), ROOT will draw error bars for you.

m.bona@qmul.ac.uk 30

TH2F h2("h_name", "h_title", 10, 0.0, 10.0, 20, -10.0, 20.0);

2D Histogram

x axis co-ordinates y axis co-ordinates

• 2D histograms behave the same as 1D histograms

• have some interesting Draw() options
surf - draw a surface
surf1 - draw a surface with colour contors
cont - draw a contour plot
contz0 - draw a contour plot with the y axis scale shown
lego - draw a 2D histogram
box - draw boxes (default is to spread points out according to

 the defined bins)
text - draw 2D grid of number of entries per bin.

• These draw options also work for trees

m.bona@qmul.ac.uk 31

myHist.Draw() myHist.Draw(“surf”)

myHist.Draw(“contz0”) myHist.Draw(“box”)

m.bona@qmul.ac.uk 32

myHist.Draw(“lego”)

myHist.Draw(“surf1”) myHist.Draw(“text”)

myHist.Draw()

m.bona@qmul.ac.uk 33

Making histograms from a TTree

• When you draw a variable from a TTree you can fill a histogram

myTree.Draw("mes>>tmphist");
tmphist.Draw("e");

variable
name

means
make hist hist name

Now root knows you have a histogram of name tmphist

tmphist is a histogram made to have the content corresponding to
that of the tree

If you have already
defined the histogram
tmphist, then ROOT
will fill this for you
from the tree. If you
have not defined
tmphist ROOT will
make a guess as to
the axis ranges, and
will create a 100 bin
histogram for you.

m.bona@qmul.ac.uk 34

myTree.Draw("mes>>tmphist");
myTree1.Draw("mes>>+tmphist");
myTree2.Draw("mes>>+tmphist");

tmphist.Draw("e");

>>+ means add to existing
histogram

By default you get a histogram with 100 bins. If you want to change this
you’ll have to specify a histogram yourself; e.g.:

TH1F tmphist("tmphist", "", 25, 5.2, 5.3);
myTree.Draw("mes>>tmphist");

Making histograms from a Ttree (II)

m.bona@qmul.ac.uk 35

MacrosMacros

• Lots of commands you’ll want to repeat often just like scripts in terms
 of shell programming or source files in terms of programming.

– save them in a “macro” file (same concept as a PAW kumac)
– just a bunch of commands in file, enclosed in {…}

• The following is an example of an un-named macro:
{
 TFile f("data/signal.root");
 f.ls();
 TCanvas c1;
 pi0mass.Draw();
 c1.Print("pi0mass.eps");
}

• You save macros as a C file; e.g. myMacro.cc
 (actually the extension that you use can be anything).

• To execute an un-named macro:
root[0] .x myMacro.cc

 On doing this ROOT will run all the commands in myMacro.cc.

m.bona@qmul.ac.uk 36

• The following is an example of a named macro:

void myMacro(void)
{
cout << “Hello World!” << endl;

}

• If the macro name is the same as a function then you can run the
macro from the ROOT prompt with

root[0] .x myMacro.cc

or from the command line with
> root –l –b –q myMacro.cc

• named macros like this are #includeable in other files.

contains normal C++ code,
functions/classes etc.

m.bona@qmul.ac.uk 37

#include "myMacro.cc"

void mainFunc(void)
{
 cout << "calling included function" << endl;
 myMacro();
 cout << “done” <<endl;
}

e.g. save this as mainFunc.cc

included file

macro entry
point

the function
call

You can pass an argument to a named macro
from the command line or ROOT.

Try running the following example:
root hello.cc'("Your name")'

m.bona@qmul.ac.uk 38

• Combine named and un-named macros to build up an analysis.

• Macros can call and use other macros.

• Syntax to load a macro from a file:
gROOT->LoadMacro(“myFile.cc”);

 formal version of the CINT command line .L myFile.cc

• If you will use the function frequently, better to have named macro or
define the function in a header file you can #include from your
macros.

• Scope works the same as in C++, anything defined in a macro or
function exists only inside that macro or function.

• Complicated analyses should be compiled using gcc or another C++
compiler (to help you debug it and speed up the analysis).

m.bona@qmul.ac.uk 39

Lecture 6Lecture 6

• More on TFiles – making a new file
• Reading data from a tree on an entry by entry basis
• Makefiles
• The ‘main()’ function
• Compiling a stand-alone executable
• Using scripts to run a ROOT analysis

m.bona@qmul.ac.uk 40

TFilesTFiles

You’ve already met TFiles – a bit more on how to use them
– Files can contain directories, histograms and trees (ntuples) etc.
– These are ‘persistent’ objects
– In root you make an object persistent by inheriting from TObject

A few file commands/constructors that you’ve already met:
• Open an existing file (read only)

TFile myfile("myfile.root");

• Open a file to replace it
TFile myfile("myfile.root", "RECREATE");

or append to it:
TFile myfile("myfile.root", "UPDATE");

• Some useful member functions include
TFile::GetName();
TFile::GetTitle();
TObject * TFile::Get(const char *)

m.bona@qmul.ac.uk 41

Tfiles (II)Tfiles (II)

• Open an existing file (read only)
TFile myfile("myfile.root");

• Open a file to replace it
TFile myfile("myfile.root", "RECREATE");

or append to it:
TFile myfile("myfile.root", "UPDATE");

• Some useful member functions include
TFile::GetName();
TFile::GetTitle();
TObject * TFile::Get(const char *)

the object key name

TObject * - you have to “cast up” the returned object to the
persistent type to be able to use it properly.
This is just what you did earlier with:
 TTree * mySignalTree =

(TTree*)myfile.Get("selectedtree")

m.bona@qmul.ac.uk 42

root[0] TFile myfile("data/signal.root")
root [1] myfile.ls()
TFile** signal.root
 TFile* signal.root
 KEY: TH1D cossphericity;1 cossphericity
 KEY: TH1D photonlat;1 photonlat
 KEY: TH1D pi0mass;1 pi0mass
 .
 .
 .
 KEY: TTree selectedtree;1 Final variables tree

root [2] TH1D * cossph = (TH1D*)signal.Get("cossphericity");
root [3] TH1D * lat = (TH1D*)signal.Get("photonlat");
root [4] TH1D * mpi0 = (TH1D*)signal.Get("pi0mass");

root[5] mpi0->Draw();
root[6] lat->Draw();
root[7] cossph->Draw();

Open the file
signal.root
(This is B0 Monte
Carlo simulated data)

“Get” the
3 histos

Try looking at the histograms

Using TFile::Get()

The key type is the root object type 

in
memory

m.bona@qmul.ac.uk 43

What if you want to make a new file?

TFile newfile("myNewFile.root", "RECREATE", "comment"); open a new file

any new objects are automatically put in this file (you
can change this behaviour if you don’t want it to happen)

//make some histograms
TH1F aHist("aHist", "some variable", 10, 0.0, 10.0);
TH2D a2DHist("a2DHist", "x vs y", 10, 0.0, 1.0, 100, -4.0, 4.0);

// make a new tree containing two scalar variables and an array
Float_t x,y;
Int_t n[10];
TTree mytree("mytree", "title");
TBranch * b_x = mytree.Branch("x", &x, "x/F");
TBranch * b_y = mytree.Branch("y", &y, "y/F");
TBranch * b_z = mytree.Branch("n", n, "n[10]/I");

// do stuff
newfile.Write();
newfile.Close();you have to Write() a file to save what you have done

It will get closed when it goes out of scope (or is deleted).

m.bona@qmul.ac.uk 44

//make some histograms
TH1F aHist("aHist", "some variable", 10, 0.0, 10.0);
TH2D a2DHist("a2DHist", "x vs y", 10, 0.0, 1.0, 100, -4.0, 4.0);

// make a new tree containing two scalar variables and an array
Float_t x,y;
Int_t n[10];
TTree mytree("tree", "title");
TBranch * b_x = mytree.Branch("x", &x, "x/F");
TBranch * b_y = mytree.Branch("y", &y, "y/F");
TBranch * b_z = mytree.Branch("n", n, "n[10]/F");

// do stuff (e.g. your selection code)

// persist all objects to a file at the end of the macro
TFile newfile("myNewFile.root", "RECREATE", "comment");
aHist.Write();
a2DHist.Write();
mytree.Write();
newfile.Write();
newfile.Close();

you can also Write() objects to the file to save
what you have done at the end of the macro, just
before things go out of scope

Alternatively…

m.bona@qmul.ac.uk 45

TreesTrees

• ROOT trees (TTree)
– Trees can contain different types of data (e.g. Int_t, Bool_t, Float_t,

Double_t). The trees have branches (subdirectories).
– Trees also have leaves that represent variables and contain data.
– Trees are optimized to enable fast access to data, and minimize

disk space usage.

• Trees (with leaves but not branches) can be thought of like tables:
– rows can represent individual events
– columns (leaves) represent different event quantities

• Some useful function calls for a TTree:
– To view the content (variables) in a tree: myTree->Print()

– To inspect event iEvt (print out values of leaves): myTree->Show(iEvt)

– To draw a distribution of a leaf myTree->Draw("variable")

– To draw a 2D distribution of x vs. y myTree->Draw("x:y")
– To draw x while cutting on y myTree->Draw("x", "y>5")

m.bona@qmul.ac.uk 46

Reading data from a treeReading data from a tree

TTree * mytree = (TTree*)myfile.Get("selectedtree");

Float_t mes, de, fisher, imass[3];

// set the tree up to fill local variables
mytree->SetBranchAddress("mes", &mes);
mytree->SetBranchAddress("de", &de);
mytree->SetBranchAddress("newfish", &fisher);
mytree->SetBranchAddress("imass", imass);

// loop over the candidates in the TTree
for(int iEvt = 0; iEvt < mytree->GetEntries(); iEvt++)
{
 mytree->GetEntry(iEvt); // load the candidate #iEvt
 cout << "candidate iEvt = " << iEvt << “\t mes = ”<<mes<<endl;
}

Set the Branch to fill local
variable - you can update
the value to that variable
for any iEvt in the tree

The number of events or candidates
in a tree (there is one per call to the
tree->Fill() function).Load the entry iEvt into the local

variables mes, de, fisher & imass

eg1_loopOverTree.cc

m.bona@qmul.ac.uk 47

// declare variables to use in the tree
Float_t x,y;
Int_t n[10];

// make the tree object
TTree mytree("tree", "title");

// set up the tree structure
TBranch * b_x = mytree.Branch("x", &x, "the variable x/F");
TBranch * b_y = mytree.Branch("y", &y, "the variable y/F");
TBranch * b_n = mytree.Branch("n", n, "n[10]/I");

for(Int_t i = 0; i < 100; i++)

{

//do stuff to fill variables with a value
[...]

mytree.Fill();

}

Building a tree from scratch

fill the tree with another entry
you have to set the values of
x, y and i before doing this

An array used in this way is a
pointer so you don’t need the &

br
an

ch
 n

am
e

va
ria

bl
e

co
m

m
en

t/T
yp

e

m.bona@qmul.ac.uk 48

ROOT Exercise 3ROOT Exercise 3

1) Write a macro that takes the name of a file as an input, opens this
and get the tree out of it to loop over (e.g. signal.root etc.)

2) Extend this macro so that you also make a second tree
 – this should contain the variables:

mes
de
newfish

 – do this while cutting on mes and de such that:
5.2 < mes < 5.29

 -0.4 < de < 0.4

 – loop over the events in the original tree writing those out
 that pass the cuts listed to the new tree and save to a new file.

There is an example solution saved as myRootStuff.cc

m.bona@qmul.ac.uk 49

Some more advanced ROOT usageSome more advanced ROOT usage

• use Makefiles to compile a stand alone application
– faster run time execution
– better error checking at compile time
– get to debug output when things core dump
– introduce you to (simple) Makefiles

• The last exercise made you write the essence of a simple analysis in
root.

• As your analysis gets more complicated you’ll probably introduce a few
bugs and write some code that may well take a long time to run.

• When you start doing this – it is worth thinking about compiling your code
to make sure it is robust and at the same time speed up its execution.

m.bona@qmul.ac.uk 50

The MakefileThe Makefile

LIBS=`root-config --libs`
CFLAGS=`root-config --cflags`
CC=g++

set compiler options:
-g = debugging
-O# = optimisation
COPT=-g

default:
 $(CC) $(COPT) main.cc -o main $(LIBS) $(CFLAGS)

clean:
 rm main

use root-config to define libraries and include paths for you

set compile
 options

The Content of a Makefile

targets – e.g. gmake – compile the default target
 gmake clean – run the clean target

file(s) to compile

this is a [tab]

output binary name

m.bona@qmul.ac.uk 51

you will need to #include some files to make sure that the stand
alone application finds the necessary declarations ….

Some useful files are:
TNamed.h knows about basic types such as Float_t
TString.h
TFile.h
TTree.h
TChain.h
TH1F.h
etc.

If you use an object in root then you will need to #include the
corresponding header file e.g.

#include "TNamed.h"
#include "TString.h"
etc.

A comprehensive list of classes can be found at:
http://root.cern.ch/root/Reference.html

#include a file for each root
class that you are using

http://root.cern.ch/root/Reference.html

m.bona@qmul.ac.uk 52

1) Write a file containing a main function – for example –put
the following in a file called main.cc:

#include <iostream>
#include "myRootStuff.cc"

using namespace std;

int main(int argc, char * argv[]);

int main(int argc, char * argv[])
{
 // decode command line arguments
 char inputfile[256] = "";
 for(int iArg = 1; iArg < argc; iArg++)
 {
 if(!strcasecmp(argv[iArg],"-file")) strcpy(inputfile, argv[++iArg]);
 }

 // call root stuff in include file
 myRootStuff(inputfile);

 return 0;
}

include your root macro

prototype for main

main function that
calls the macro
entry point

ROOT Exercise 4ROOT Exercise 4

m.bona@qmul.ac.uk 53

• entry point:
this is the thing that is called when the system runs a program. For a
C/C++ program this is a function called main. For a ROOT macro, it is
the function with the same name as the macro file.

3) run the application you have just compiled:
./main –file signal.root

2) Now you can gmake (or make), fix any errors and run the application
 – the application will be called 'main'
 as specified after the –o in your Makefile.

 ERRORS  will stop you being able to compile the program
 Warnings  you might have a problem with the way you have written
 it is good practice to make sure you don’t have any warnings

 If you got stuck with this at any point there are examples of Makefile,
main.cc and myRootStuff.cc in Lectures/macros so you can take a look
at these and play about with them…

m.bona@qmul.ac.uk 54

Using scripts to run rootUsing scripts to run root

Now that you have a working executable you can run it using:

./main –file data/signal.root

An alternative way to do this is to pass the argument to the macro when
you start root and remember to quit root when done:

root –l –b –q myRootStuff.cc'("root file name")'

You have two files to convert in this way – so you can run the program on
one file and rename this. Then run the program on the second file.
Imagine that you had 50 such files to do this to (i.e. many different
possible backgrounds) … are you still going to do this by hand?

Exercise:
1) write a script to loop over the root files in data/ and
 run your macro or binary program on these files.
  make sure that you’re happy with doing
 this kind of thing as it will be useful

usingScriptsToRunRoot.csh

m.bona@qmul.ac.uk 55

More fun with ROOT
The following is additional material that will not be

covered in Lectures.

More fun with ROOT
The following is additional material that will not be

covered in Lectures.

The next section builds your knowledge of
what you can do in root with more emphasis

on presentation than the previous slides.

There is less formal structure in what follows

m.bona@qmul.ac.uk 56

TCanvas and TPadTCanvas and TPad

Canvas: a graphics window where histograms are displayed

• It is very easy to edit pictures on the canvas by clicking and
dragging objects and right-clicking to get various menus.

• A ROOT canvas is a TCanvas object.

• the default canvas, c1, is created on first call to Draw().
This is equivalent to

 TCanvas *c1=new TCanvas(“c1”,””,800,600);

• Update canvas (if you make a change): canvas->Update();

• Tidy up canvas: canvas->Clear();

• Initially, the canvas has one pad which covers whole canvas
 can use Divide

See FNAL tutorials and the ROOT User Guide for more on
the use of canvases, pads and the ROOT GUI

m.bona@qmul.ac.uk 57

• You can split canvas into several TPads, with

canvas->Divide(2,2);
canvas->Divide(nX, nY);

• You can plot different histograms on different pads
● To change the pad you are working with use (where iPad ≤nX×nY)

canvas->cd(iPad)

• Save the contents of the canvas to a file

canvas->Write()

• Can save as ps, eps or gif using SaveAs() and Print()

canvas->SaveAs(“file.ps”)
canvas->SaveAs(“file.eps”)
canvas->SaveAs(“file.gif”)

canvas->Print(“file.ps”)
etc..

• Also can make TPads by defining the co-ordinates by hand.

Can’t run in batch mode

m.bona@qmul.ac.uk 58

TFile f("data/signal.root")
TTree * mytree =
 (TTree*)f.Get("selectedtree")

TCanvas c1("c1")
c1.Divide(2,2);

c1.cd(1)
mytree->Draw("fde:fmec", "fmec>5.2")
c1.cd(2)
mytree->Draw("fde:fmec", "fmec>5.2", "surf")
c1.cd(3)
mytree->Draw("fde:fmec", "fmec>5.2", "contz0")
c1.cd(4)
mytree->Draw("fde:fmec", "fmec>5.2", "box")

Example use of a splitting up a
TCanvas into 4 pads

m.bona@qmul.ac.uk 59

To set up the stats box

gStyle->SetOptStat(); //default setting
gStyle->SetOptStat(0); //no stats box
h1->Draw(); //update canvas
gStyle->SetOptStat(1111111); //turn all options on
h1->Draw();
gStyle->SetOptStat(11); //name & #events only
h1->Draw();

Statistics BoxStatistics Box

• Default placing – top right

• Various statistics can be
displayed,
– histogram name, mean,

rms, number of entries,
over- and under-flows

 [i.e. entries out of range]

m.bona@qmul.ac.uk 60

LegendsLegends

•TLegend - the key to the lines/histograms on a plot

• E.g. for a two-line histo (h1 and h2):
// TLegend(x1,y1,x2,y2,header)

TLegend myLegend(0.1, 0.2, 0.5, 0.5, "myLegend")

myLegend.SetTextSize(0.04);

//AddEntry(): first arg must be pointer

myLegend.AddEntry(&h2, "after cuts", "l");

myLegend.AddEntry(&h1, "before cuts", "l");

myLegend.Draw();

• “l” (lowercase 'L') instructs

 ROOT to put a line in the

 legend.

m.bona@qmul.ac.uk 61

Text BoxText Box
• Use text box (TPaveText) write on plots, e.g.:

TPaveText *myText = new TPaveText(0.2,0.7,0.4,0.85, “NDC”);
 //NDC sets coords relative to pad
myText->SetTextSize(0.04);
myText->SetFillColor(0); //white background
myText->SetTextAlign(12);
myTextEntry = myText->AddText(“Here’s some text.”);
myText->Draw();

• Greek fonts and special characters:
h1->SetYTitle(“B^{0} #bar{B^{0}}”); //must have brackets
h1->SetTitle(“#tau^{+}#tau^{-}”); // to get super/subscript

The special characters that root knows are defined in the TLatex class.
These are very similar to the use of latex maths commands but with
 ‘\’  ‘#’; e.g.

latex  root
\tau  #tau
\alpha  #alpha

not everything is
available in TLatex

m.bona@qmul.ac.uk 62

Symbols known to Tlatex.
N.B. these are all proceeded by a '#' symbol.

m.bona@qmul.ac.uk 63

Fitting 1D FunctionsFitting 1D Functions

• Fitting in ROOT based on Minuit (ROOT class: TMinuit)

• ROOT has 4 predefined fit functions, e.g.
gaus: Gaussian function f(x)=p0exp{-½[(x-p1)/p2]2}

 landau: Landau function (seethe literature for a full dfn).
 expo: exponential function f(x) = p0exp(p1*x)
 polyN: polynomial of order N, N=0, 1, 2, ... 9.

• Fitting a histogram with pre-defined functions, e.g.
h1->Fit(“gaus”);

• User-defined: 1-D function (TF1) with parameters:
TF1 *myFn =

new TF1(“myfn”,”[0]*sin(x) +[1]*exp(-[2]*x)”,0,2);

• Set param names (optional) and start values (must do):
myFn->SetParName(0,”paramA”);
myFn->SetParameter(0,0.75); //start value for param [0]

• Fit a histogram:
h1->Fit(“myfn”);

m.bona@qmul.ac.uk 64

Fitting IIFitting II

• Fitting with user-defined functions often requires solving a more
complicated problem. Save the following as a macro called myfunc.cc

double myfunc(double *x, double *par)
{

double arg=0;
if (par[2]!=0) arg=(x[0]-par[1])/par[2];
return par[0]*TMath::Exp(-0.5*arg*arg);

}

•double *x is a pointer to an array of variables
– it should match the dimension of your histogram

•double *par is a pointer to an array of parameters
– it holds the current values of the fit parameters

• now try and fit a histogram h1 with your function
.L myfunc.cc
TF1 *f1=new TF1(“f1”,myfunc,-1,1,3);
f1->SetParameters(10, h1->GetMean(), h1->GetRMS());
h1->Fit(“f1”);

m.bona@qmul.ac.uk 65

Fitting III – The Fit PanelFitting III – The Fit Panel

• Open a fit panel for your histogram with:
 myHistogram->FitPanel();

Specify the fitting function you want to use in
the text box (has to be one known to ROOT).

Can switch between a χ2 fit or a likelihood fit.

Can use the slide bar at the bottom to restrict
the fit range to a sub-sample of your data.

To run or re-run a fit press the 'Fit' button.

m.bona@qmul.ac.uk 66

Fitting IVFitting IV

• If you have a complicated maximum-likelihood fit that you want to
perform – don’t do this by writing your own fit functions from scratch
in ROOT.

• There is a package in ROOT called RooFit. This is a fitting package
that is written by members of the HEP community to do complicated
analyses (started on BaBar).

• There are tutorials on the web and the code is also available at the
source forge: http://roofit.sourceforge.net/

• I would recommend that you think about using this if you have to do
any unbinned maximum likelihood fit analysis as once you get started
RooFit is a very powerful and flexible tool for easily building very
complicated PDFs to fit to.

http://roofit.sourceforge.net/

m.bona@qmul.ac.uk 67

TBrowser – the ROOT GUITBrowser – the ROOT GUI

• The TBrowser is the ROOT graphical interface

• It allows quick inspection of files, histograms and trees

• Make one with:
TBrowser tb;

• More formally:
TBrowser *tb = new TBrowser;

• Full details on how to manipulate the browse are in the
ROOT user guide.

m.bona@qmul.ac.uk 68

Using the TBrowserUsing the TBrowser

• Start in ROOT with:
TBrowser tb;

• Any files already opened will be in the ROOT files directory

• Directory ROOT session started in will be shown too

• Otherwise click around your directories to find your files

• Click to go into chosen directory

• Double-click on any ROOT files you want to look at
 (you won’t see an obvious response)

• Now go into the ROOT files directory

• Selected files now there

• Can click around files, directories, trees

• Can view histograms and leaves

m.bona@qmul.ac.uk 69

Automatic code generationAutomatic code generation

You can simplify analysis of large ntuples by using built in automatic code
generation methods available in ROOT. You have already learnt what
you have to do to analyse NTuples in the examples – so you are now in a
position to cheat to get the job done faster 

mytree->MakeCode() - obsolete -> use MakeClass or MakeSelector instead
mytree->MakeClass() - make a class with a loop() member function to run

 over the tree
mytree->MakeSelector() - similar

Try these out to see what is auto generated. Toy should have a
nameless macro in the first case and classes for the latter two.
Usually I start from MakeCode(), but on occasion use MakeClass().

m.bona@qmul.ac.uk 70

SummarySummary

• You’ve now reviewed some of the basics UNIX, shell scripting & perl
so that you can get these to do work for you – you’ll probably need
more practice

• had a crash course in root … and done some analysis

• seen histograms and ntuples close up.

• written a simple Makefile to compile your root code to make it faster

• used a script to run a job – automating work for you

The next step with this is to practice what you’ve learnt – this way
you’ll better recognise when to do certain things to make your life
easier than it currently is

If you find yourself wasting time doing the same thing over and
over again there is something out there to learn so that you can
save time and get back to the real job at hand …. Physics!

m.bona@qmul.ac.uk 71

Where to Get More Information
ROOT

Where to Get More Information
ROOT

• The ROOT homepage:

http://root.cern.ch/
– examples, HOWTOs, tutorials, class information,
 ROOT source code
– RootTalk mailing list – high traffic, great search facility

• Fermilab’s three-day ROOT course

http://patwww.fnal.gov/root

• SLAC’s root web pages:
http://www.slac.stanford.edu/BFROOT//www/Computing/Offlin

e/ROOT/index.html

• Other students/post-docs in the group

• Email me: m.bona@qmul.ac.uk

http://root.cern.ch/
http://patwww.fnal.gov/root

	HEP Computing Part III ROOT Adrian Bevan
	Aims of this part of the course
	Lecture 5
	ROOT
	Some basic concepts
	Histograms
	Flat Files
	NTuples
	Starting with ROOT
	What is ROOT?
	e.g. Setting up the ROOT environment
	Running ROOT and using h2root
	A few words on CINT
	CINT commands
	ROOT Data Types
	Slide 16
	Tab Completion
	Slide 18
	ROOT exercise 1: making sure you can use root
	Files
	Files II
	tree print and dump
	exercise 2
	now you can
	Histograms
	Colors
	Colors II
	Lines and Markers
	More on Histos
	2D histos
	examples 2D
	examples 2D (II)
	TH1 from a TTree
	TH1 from a TTree (II)
	Macros
	Named macro
	Calling a macro
	Load a macro
	Lecture 7
	TFiles
	TFiles II
	get()
	new file
	new file II
	Trees
	Reading data from a tree
	Building a tree
	ROOT Exercise 3
	Some more advanced ROOT usage
	The Makefile
	Includes
	ROOT Exercise 4
	Exercise 4
	Using scripts to run root
	More fun with ROOT The following is additional material that will not be covered in Lectures.
	TCanvas and TPad
	Slide 57
	Slide 58
	Statistics Box
	Legends
	Text Box
	Slide 62
	Fitting 1D Functions
	Fitting II
	Fitting III – The Fit Panel
	Fitting IV
	TBrowser – the ROOT GUI
	Using the TBrowser
	Automatic code generation
	Summary
	Where to Get More Information ROOT

