
m.bona@qmul.ac.uk 1

HEP Computing
Part II

Scripting
Marcella Bona

HEP Computing
Part II

Scripting
Marcella Bona

Lectures 2

 Adrian Bevan

m.bona@qmul.ac.uk 2

Lecture 2Lecture 2

• Introduction to scripts: what are they,
 how do you write and run them?
• Using bash
• Special Characters.

m.bona@qmul.ac.uk 3

ScriptingScripting

This section covers the idea of putting together use of
commands into a unit/block i.e. a script:

- how to write your own scripts
- understand other people’s scripts
- know where to get more information

The benefit of scripting is the automation of common repetitive
Tasks; so you get

greater productivity
time to spend elsewhere doing more interesting things

There are many different ways to get the same result – as long
as the script works there is no right or wrong solution – just
do/use what works for you.

m.bona@qmul.ac.uk 4

Aim to learn two things:

A basic grasp of a shell scripting language and something like PERL

bash – default shell PERL

now python is more used
so we'll have two hours
on it. However you can still
encounter perl script.

What should you learn?What should you learn?

Other shells exist,
you may come
across some of
these: tcsh, ksh,
…

m.bona@qmul.ac.uk 5

So what is a script?So what is a script?
A set of commands in a file that are executed sequentially

Basics: • Start file with a ‘#!’

• follow this with the path to the program [e.g.
bash, tcsh, PERL, python…] use which to
find a program if you don’t know where it is!
e.g. which perl

• after this comes the commands that are run

• comments start with ‘#’ and continue to the
end of the line

•chmod u+x scriptname to change the file
permissions so you can run the script

• run using ./scriptname or if you have ‘.' in
your path just use scriptname

m.bona@qmul.ac.uk 6

you can check to see if a file is executable using ls -l

bfa ~/Lectures/scripts > ls -l
total 24
-rwxr----- 1 bona zp 1632 Aug 20 13:39 jot*
-rwxr----- 1 bona zp 231 Aug 19 13:42 loopTest.sh*
-rwxr----- 1 bona zp 240 Aug 19 13:45 loopTest.tcsh*
-rwxr----- 1 bona zp 197 Aug 21 15:28 sanr*
-rw-r----- 1 bona zp 241 Aug 21 15:28 sanr2
-rwxr----- 1 bona zp 673 Aug 20 13:43 texIt*

User permissions

Group permissions

‘Other’ permissions
(any user)

user name
of file owner

timestamp of modification

filename

group of user
who owns file

file is executable

file size

r = readable
w = writeable
x = executable

Aside: File PermissionsAside: File Permissions

m.bona@qmul.ac.uk 7

The command chmod can be used
to change permissions on files and

directories. To make the file
executable to the user just type:

chmod u+x forlooptest.sh

bfa ~/Lectures/scripts > ls –l forlooptest.sh
-rw-r----- 1 bona zp 240 Aug 19 13:45 forlooptest.sh

You can only read and write this file

bfa ~/Lectures/scripts > chmod u+x forlooptest.sh
bfa ~/Lectures/scripts > ls –l forlooptest.sh
-rwxr----- 1 bona zp 240 Aug 19 13:45 forlooptest.sh*

Now this can also be executed

Aside: Making a file executableAside: Making a file executable

m.bona@qmul.ac.uk 8

#!/usr/local/bin/perl –w
print "Hello World\n";

You DO want this with perl!
it gives warnings when you

start to do things wrong

#!/bin/bash
echo "Hello World"

#!/bin/tcsh
echo "Hello World"

The “Hello World” example:The “Hello World” example:

m.bona@qmul.ac.uk 9

bash: have configuration files that are run

- at login
- start of a shell
- log out

These files have different names as given later on. In addition to this,
there is a history file that records what commands you have used
recently.

I’ll assume that your default shell is the bash shell. There are other
shells that you may encounter – these all have similar functionality
(e.g. ksh, tcsh) but slightly different syntax.

General CommentsGeneral Comments

m.bona@qmul.ac.uk 10

bash – an introductionbash – an introduction

• #!/bin/bash - invoke the shell
 [if this doesn’t work try ‘which bash’ to find it]
• use sh/bash in a production environment to do anything REALLY serious

Config files run at
.bash_profile login (your basic shell setup). Changes

 will be picked up the next time you log
 into a machine.

.bashrc shell start up [may not exist, run
via the .bash_profile].

.bash_logout logout.

Other useful files:
.(bash_)history record of last session’s commands.

bash is a robust shell for general use.
http://www.gnu.org/software/bash/

 use the history command to see the history of shell commands
 that you have used

m.bona@qmul.ac.uk 11

if [condition]
then
 # do something
else
 # do something else
fi

for I in <list>
do
 echo $I
done

while [condition] ; do
 #do stuff
done

environment
& variables

var=value
export var

export var=value

set the value
(can use in scripts)

set and export variable
to the environment

bashFor these examples, there is a condition in
square brackets: [some condition]

until [condition]; do
 # do something
done

can export value
after setting it.

loops

m.bona@qmul.ac.uk 12

if ["$MYVAR" == "yes"]
then
 echo "yes"
else
 echo "no"
fi

export MYLIST="a b c d"
for I in $MYLIST
do
 echo $I
done

while ["foo" != "bar"] ; do
 echo "ere I am J.H."
done

bash

until ["foo" == "bar"] ; do
 echo "ere I am J.H."
done

For these examples, there is a condition in
square brackets: [some condition]

environment
& variables

var=value
export var

export var=value

loops

m.bona@qmul.ac.uk 13

$PATH path to search for apps
$LD_LIBRARY_PATH path to search for libs
$HOME your home directory
$USER your UID
$ROOTSYS root install directory
$SHELL the shell you’re using
$EDITOR e.g. emacs
$PRINTER e.g. PRINTER=ds

access variables with $ prefix

Some Important environment variablesSome Important environment variables

m.bona@qmul.ac.uk 14

#!/bin/bash
forlooptest.sh
#
simple example of looping over
more than one directory
and performing an action on the directory

for thisdir in `ls -F | grep '/'`
do
 echo "looking at directory $thisdir"
 ls $thisdir
done

The shell

Run the command in ` ` to
get the list of directories.

Loop over the directories and list
the content of each one

forlooptest.sh

Example script: looping in bashExample script: looping in bash

m.bona@qmul.ac.uk 15

~ > ./Lectures/scripts/forlooptest.sh

looking at directory bin
NNMakeAllCfgFiles* diagonalize*
icrootqsub*
NNMakeCfgFiles* makeFlatFile*
NNMakeInputFiles* fitForPulls.cc
makeSimFitFile*
calculateLikelihoodUL.c getPullTable*
clean_package* getPulls*
combineInQuadrature* getSigTable*
cullDeadRootFiles getSignificance*

looking at directory scripts
Acrobat.ps dos2unix* myCronJobs
CronJpsitollKanga excludeFile.txt myCronJobs-
old*
CronTest* finalize myPs2Gif*
RandomHacks/ findDeadNodes* niceJobs*
RecursiveFileSearch.pm findMissingLines* opr/
etc.

• If I run forlooptest.sh from my home directory I get the following output

same as doing the commands
echo "looking at.."
ls bin
echo "looking at.."
ls scripts
echo "looking at.."
ls analysis
echo "looking at.."
ls tex

Using a script to do work for youUsing a script to do work for you

m.bona@qmul.ac.uk 16

• If you try to set an environment variable in the following way
export TEST=date

 the value assigned to TEST will the string ‘date'.

•You can use backticks: `<command>` to access the output obtained
when executing a command in a script.

set MYDATE to have the value
of the date command’s output
export MYDATE=`date`
set TODAY to be the day of the week
based on the date command
export TODAY=`date | awk '{print $1}'`

You can inspect the values set for the environment variables by typing
echo $MYDATE
echo $TODAY

Backticks can be extremely useful in scripts!

Getting the output of a commandGetting the output of a command

m.bona@qmul.ac.uk 17

• Write and get working the ‘hello world’ shell script example shown
previously

• Write a script to loop over a list of variables and echo each value (hint
see examples).

• Write a script to take arguments from the command line and write an
output file containing these.

hint: the variable $0 is the script name used and $1, $2, … $n are the
n arguments supplied to the command line. see the echo command

Then manipulate the output of the date command into a timestamp for
the name of the log file

hint: can use awk and backticks e.g.: export mydate=`date`

Here are a few examples to work through. You will learn how to
1) write your own script and make sure you can run it
2) know how to get the output of another command into your script
3) loop over a list in a script
4) access the command line arguments given to a script

Shell Scripting Examples Shell Scripting Examples

m.bona@qmul.ac.uk 18

Examples: 1) Hello World

• Open a file called hello.pl
• enter the following into the file:

#!/usr/bin/perl –w
print "hello world\n";

check this matches the output of
the command:
 which perl

• Change the permissions on the file so that you can run this:

 chmod u+x hello.pl

• Now you can run the script using:

 ./hello.pl

 tcsh and bash examples can be taken from page 8
 As an aside – this is simple & you can do this on the command line;
 try typing the following command:
 perl –e 'print "hello world\n"'

m.bona@qmul.ac.uk 19

Examples: 2) Getting information from the system: bash

• Write a new script called test1.sh and start this off in the usual way:

#!/bin/bash
for fi in `ls`
do
 echo "Found file $fi"
done

• change permissions so you can run the script and use the
command ls on the current directory

chmod u+x test1.sh

and get the output to print. It should look something like:

listing the content of your current directory

Found file hello.txt
Found file jot
Found File loopTest.sh
.
.

shell

loop

m.bona@qmul.ac.uk 20

Examples: 3) more looping

• Use a while loop to count from 1 to 10 in a script.

 mycounter=1

 while [$mycounter -lt 11]; do

 echo The counter currently has the value $mycounter
 let mycounter=mycounter+1

 done

D
o

 stu ff

end of loop

start index of loop
loop condition

index variable

whilelooptest.sh

The let command carries out
arithmetic operations on
variables

m.bona@qmul.ac.uk 21

Examples: 4) more looping

• Use an until loop to count from 1 to 10 in a script.

 mycounter=1

 until [$mycounter -gt 10]; do
 echo The counter currently has the value $mycounter
 let mycounter+=1
 done

Very similar to the while loop.

start index of loop

untillooptest.sh

index variable

loop condition

D
o

 stu
ff

end of loop

The let command carries out
arithmetic operations on
variables

m.bona@qmul.ac.uk 22

Examples: 5) Using command line arguments

Aim: Want to parse arguments to a script e.g.:
./myScript a b c

 so that the script can use ‘a’, ‘b’ and ‘c’ to do stuff

• Start off in the usual way – open a new file and enter:

#!/bin/bash

echo "1st Argument $1"
echo "2nd Argument $2"
echo "3rd Argument $3"

• Then change the permission to run the file and add the commands to
print out the input arguments:

#!/usr/bin/perl –w
use strict;

foreach my $iarg (@ARGV)
{
 print "$iarg\n";
}

The command line arguments
are $n for shell scripts

Similar to C, C++, use variable ARGV
to get arguments. ARGV[0] is the first
argument and $0 is the script name.

printargs.pl

m.bona@qmul.ac.uk 23

You want to run forlooptest.sh and put the output into a file:

forlooptest.sh > test.txt

redirect the output of the command
forlooptest.sh into the file test.txt

You want to print the day of the week , month of the year and the year only
from the date command:

bfa ~ > date
Mon Oct 18 15:52:28 BST 2010
bfa ~ > date | awk '{print $1 " " $2 " " $3 " " $6}'
Mon Oct 18 2010

The pipe ‘|’ means take the output of the first
command and pass it to the second command

Examples – use of scripts etc.Examples – use of scripts etc.

m.bona@qmul.ac.uk 24

You want to append one file to the end of another:

forlooptest.sh > test.txt
date | awk '{print $1 " " $2 " " $3 " " $6}' >> test.txt
cat somefile.txt >> test.txt

The >> operator appends information
to the file test.txt

You can see that the special characters

 |, > and >>

that you’ve just been introduced to are quite useful in writing log files of
events that happen when commands are being executed. There are a
number of these listed on next page.

m.bona@qmul.ac.uk 25

Special Characters & useful syntaxSpecial Characters & useful syntax

To get the most out of scripting you’ll need some background information

> redirect output
>> append to output file
< redirect input
<< ‘here document’ (redirect input)
| pipe output
& run process in bkgnd
; separate commands on one line
? match single character
* match any character(s)
`<command>` substitute for output of <command>: “back-ticks”
$$ process ID number of a script
$0 command name
$n argument n
$var variable
comment

take the output of one command
 and pass it to another

Useful resources are
UNIX Power Tools
LINUX in a Nutshell

but these are more in depth
than you’ll need for quite a while

redirect into a file→
→

→
→
→
→
→
→

→
→
→

m.bona@qmul.ac.uk 26

* match all
? match to any single character

e.g.
ls *.txt list all files with a .txt extension

[tersk01] ~ > ls *.txt
12seriesCheck.txt markus-tagging.txt sxf.float.txt
7bbgndresults.txt pipi.txt systematics.txt
bad-521.txt productionMC.txt tau.txt
correlations.txt quinn.txt test.txt
crossFeed.txt rad_ll.txt twoBodyModes.txt
dataCardVMassHelData.txt* resultSummary.txt unblindResults.txt
deChecks.txt rr.txt validation_25_06_03.txt
ee.txt rr_to_do.txt validation_27_06_03.txt

ls ?r*.txt list all files with extension .txt and
‘r’ as second character in the file name

[tersk01] ~ > ls ?r*.txt
crossFeed.txt productionMC.txt rr.txt rr_to_do.txt

Wildcards and pattern matchingWildcards and pattern matching

m.bona@qmul.ac.uk 27

"Regular Expression" is commonly abbreviated as regex, regexp, re or RE.

A RE is a text string pattern matching method with wild cards.

REs can be used on the command line and in UNIX filters like sed, awk,
grep, egrep and perl, and in text editors like vi, emacs and in high level
languages like C, Fortran, and Java.

Eleven characters with special meanings:
the opening square bracket [, the backslash \, the caret ^, the dollar sign $,
the period or dot ., the vertical bar or pipe symbol |, the question mark ?,
the asterisk or star *, the plus sign +, the opening round bracket (and the
closing round bracket).
These special characters are called "metacharacters".
If you want to use any of these characters as a literal in a regex, you need
to escape them with a backslash.

Regular ExpressionsRegular Expressions

m.bona@qmul.ac.uk 28

A "character class" matches only one out of several characters.
To match an a or an e, use [ae]: gr[ae]y to match either gray or grey.
A character class matches only a single character. gr[ae]y will not match
graay or graey. The order of the characters inside a character class does
not matter.

You can use a hyphen inside a character class to specify a range of
characters. [0-9] matches a single digit between 0 and 9.
You can use more than one range. [0-9a-fA-F] matches a single
hexadecimal digit, case insensitively. You can combine ranges and single
characters. [0-9a-fxA-FX] matches a hexadecimal digit or the letter X.

Typing a caret after the opening square bracket will negate the character
class. The result is that the character class will match any character
that is not in the character class.
q[^x] matches qu in question. It does not match Iraq since there is no
character after the q for the negated character class to match.

Regular Expressions IIRegular Expressions II

m.bona@qmul.ac.uk 29

\d matches a single character that is a digit,
\w matches a "word character" (alphanumeric characters plus underscore),
\s matches a whitespace character (includes tabs and line breaks).
The actual characters matched by the shorthands depends on the software
you're using. Usually, non-English letters and numbers are included.

You can use special character sequences to put non-printable characters in
your regular expression:
\t to match a tab character, \r for carriage return and \n for line feed.
Remember that Windows text files use \r\n to terminate lines, while UNIX
text files use \n.

The dot matches a single character, except line break characters.
It is short for [^\n] (UNIX regex flavours) or [^\r\n] (Windows regex flavours).
gr.y matches gray, grey, gr%y, etc..

Regular Expressions IIIRegular Expressions III

m.bona@qmul.ac.uk 30

Anchors do not match any characters. They match a position.

^ matches at the start of the string, and $ matches at the end of the string.

\b matches at a word boundary. A word boundary is a position between a
character that can be matched by \w and a character that cannot be
matched by \w. \b also matches at the start and/or end of the string if the
first and/or last characters in the string are word characters.

\B matches at every position where \b cannot match.

Alternation is the regular expression equivalent of "or".

cat|dog will match cat in About cats and dogs. If the regex is applied again,
it will match dog. You can add as many alternatives as you want, e.g.: cat|
dog|mouse|fish.

The question mark ? makes the preceding token in the regular
expression optional. E.g.: colou?r matches colour or color.

Regular Expressions IVRegular Expressions IV

m.bona@qmul.ac.uk 31

The asterisk or star tells the engine to attempt to match the preceding
token zero or more times.
The plus tells the engine to attempt to match the preceding token once or
more.
<[A-Za-z][A-Za-z0-9]*> matches an HTML tag without any attributes. <[A-
Za-z0-9]+> is easier to write but matches invalid tags such as <1>.

Use curly braces to specify a specific amount of repetition.
Use \b[1-9][0-9]{3}\b to match a number between 1000 and 9999. \b[1-9][0-
9]{2,4}\b matches a number between 100 and 99999.

Place round brackets around multiple tokens to group them together.
You can then apply a quantifier to the group. E.g. Set(Value)? matches Set
or SetValue. Round brackets create a capturing group.

Regular Expressions VRegular Expressions V

m.bona@qmul.ac.uk 32

example with emacs query-replace-regexp:

searching for repeated words: the expression "[a-z][a-z]" will match any
two lower case letters. If you wanted to search for lines that had two
adjoining identical letters, you need a way of remembering what you
found, and seeing if the same pattern occurred again.

You can mark part of a pattern using "\(" and "\)". You can recall
the remembered pattern with "\" followed by a single digit.
Therefore, to search for two identical letters, use "\([a-z]\)\1".
You can have 9 different remembered patterns. Each occurrence of "\("
starts a new pattern.
The regular expression that would match a 5 letter palindrome, (e.g.
"radar"), would be \([a-z]\)\([a-z]\)[a-z]\2\1

Regular Expressions VIRegular Expressions VI

m.bona@qmul.ac.uk 33

back-up - PERLback-up - PERL

m.bona@qmul.ac.uk 34

● PERL is more powerful than either tcsh or bash

● Supports Object Oriented programming paradigm

● large community base – modules
● CGI – web forms/html generation etc
● DB connectivity: mySQL etc
● POSIX / Networking
●
●
● you name it – there is probably something there to help you

● REGEXP engine – powerful pattern matching/substitution

● In a nutshell – PERL is a language to glue everything else
together for you

http://www.perl.com
http://www.perl.org
http://www.perlmonks.org

PERL – an introductionPERL – an introduction

http://www.perl.com/
http://www.perl.org/

m.bona@qmul.ac.uk 35

The Aim of this part of the course is to give you a crash course in PERL.
In particular the following topics introduced are

variable types

accessing the system

what a simple PERL script looks like

Getting at the command line arguments

printing in PERL

Some example scripts

m.bona@qmul.ac.uk 36

What a simple PERL script looks likeWhat a simple PERL script looks like

#!/usr/bin/perl –w
use strict;

#scalars
my $var = 5;
my $name = "wibble";

#array
my @arr = (1.0, 2.0, 3.0);

foreach (@arr)
{
 my $num = $_ + $var;
 print "$_ \t $num\n";
}

Gives warnings – you SHOULD
ALWAYS USE THIS

checks for declared types – like
FORTRAN's ‘implicit none’

declare variable using ‘my’

similar special print characters to C/C++
\t = tab, \n = new line character

semi-colon terminates line
[not necessary for last line
 in a block]

special character

m.bona@qmul.ac.uk 37

Basic typesBasic types

Scalar variable
●Starts with a ‘$’
●can be a number or a string …

$num = 5;
$name = "wibble";

Array variable
●Starts with a ’@’
●null initialiser: @arr = ();
●can push onto/pop off of a list:

push(@arr,$var); pop(@arr);

my @arr1 = (3, 4, 5, 6, 7);
my @arr2 = ("spam", "larch", "parrot");
print "$arr[2]\n";
$arr1[0] = 1;

●counting of array index starts from 0 just like C/C++ etc.

m.bona@qmul.ac.uk 38

Hash Variables this is the PERL equivalent of a MAP

●Starts with a ‘%’
●associate a key with a value

my %options = (
"parrot" => "The dead parrot sketch",
"larch" => "A tree",
"spam" => "random stuff"

);

foreach (sort keys %options)
{

print "\t$_ $options{$_}\n";
}
print "\tkey = parrot value = $options{parrot}\n";

keys values

get the keys for this hash

access the value corresponding the key parrot

an “associative
container” – look
up wrt. STL

m.bona@qmul.ac.uk 39

There are a couple of commands for printing in PERL

print "some info\n";
printf "some info: %5.2f\n", $var;

and you can easily print to a file:

open(OUT, ">outputfile.txt");

print OUT "some info\n";
printf OUT "some info: %5.2f\n", $var;

close (OUT);

print to screen

formatted
print statement

Some format characters for print (similar to C)
‘\t’ = tab
‘\n’ = new line
‘\a’ = a system beep

Printing in PERLPrinting in PERL

m.bona@qmul.ac.uk 40

Running system commands in perlRunning system commands in perl

exec "sleep 5; ping somehost"
fork a process to run the command and carry on
executing the script WITHOUT waiting for the
outcome of the command

system "ping somehost"
Execute the command AND WAIT for the system to
return control to the script

my @data = `grep somestring myFile.txt`;
Like system – but get output redirected into a
local variable (as an array) – same as for tcsh/bash etc

you can then remove the end of line characters from the array variable
chomp (@data);

System calls in Perl use sh as the default shell

m.bona@qmul.ac.uk 41

● The easy way is to pop inputs off of the bottom of @ARGV:

> ./mmyScript wibble hat (the command)

 #!/usr/local/bin/perl –w (The script)
 use strict;
 my $in1 = shift;
 my $in2 = shift;
 print "$in1\n\t$in2\n";

> ./mmyScript wibble hat (The output)
wibble

hat a more robust way to deal with
command line input is to

use Getopt::Long;

Getting input from the command line:Getting input from the command line:

m.bona@qmul.ac.uk 42

Examples: 2) Getting information from the system: PERL
(This is the PERL solution for example #2)

• Write a new script called test1.pl and start this off in the usual way:

#!/usr/bin/perl –w
use strict;

• change permissions so you can run the script and use the
command ls on the current directory and get the output to print:

my @data = `ls`;

chomp (@data);

foreach my $line (@data)
{
 print " $line\n";
}

Get rid of new line
characters in data (don’t
need this here, but it is
useful to point out now)

run command and
get the output in a
local variable

just like sh or tcsh –
use back-ticks!

The for loop to print out each
line that you got back from ls

m.bona@qmul.ac.uk 43

PERL ExercisesPERL Exercises

5) Write a script to add together two numbers and print the output.

– Extend this to take two input numbers instead of having this
hard-coded in

6) Write a script to count the number of lines in a file

– Extend this to print the file with the line number prepending
the line

7) Write a script to execute a command on each file in a directory
and loop on this printing the file name and number of lines per
file as you go.

8) Write a script to run loopTest.csh and print the last line of the
output to the screen. [n.b. you can use backticks for this if you
are really lazy].

m.bona@qmul.ac.uk 44

Example 5: A perl script to add together two numbers

#!/usr/local/bin/perl –w
use strict;
my $num1 = 5.2;
my $num2 = 7.3;
print $num1+$num2, "\n";

#!/usr/local/bin/perl -w
use strict;
my $num1 = shift || die;
my $num2 = shift || die;
print $num1 + $num2, "\n";

hardcode numbers
into script

get numbers
to add from
command line

die if you get to this part of the script then perl dies…
|| this is an OR. If there are <2 arguments passed to the script, it dies

Two new concepts:

m.bona@qmul.ac.uk 45

Example 8: Print the last line from the result of running ls.

#!/usr/local/bin/perl –w
use strict;
my @data = `ls`;
chomp(@data);

print “the last line output from ls is\n”;
print “$data[-1]\n”;

This is a foolproof way of getting the last element
of an array in perl: use the array element [-1]

It only fails if the array is null.

m.bona@qmul.ac.uk 46

• Now that you have done the examples, you should note that
exercise 6 was a waste of your time …

● there is a unix command called wc.

wc –l <filename>

 prints out the number of lines in the file…

• This is a common lesson to learn … if you are trying to do
something that is and obvious generic problem … then most
probably either

- there is (at least) a (single) command to do this already

- there is going to be more than one way to solve the
problem

- someone you work with knows/has a solution to the
problem already

	HEP Computing Part II Scripting Adrian Bevan
	Lecture 4
	Scripting
	What should you learn?
	So what is a script?
	Aside: File Permissions
	Aside: Making a file executable
	The “Hello World” example:
	General Comments
	bash – an introduction
	Slide 11
	Slide 12
	Some Important environment variables
	Example script: looping in tcsh
	Using a script to do work for you
	Getting at the output of a command
	Shell Scripting Examples
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Examples – use of scripts etc.
	Slide 24
	Special Characters & useful syntax
	Wildcards and pattern matching
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	PERL – an introduction
	Slide 35
	What a simple PERL script looks like
	Basic types
	Slide 38
	Printing in PERL
	Running system commands in perl
	Getting input from the command line:
	Slide 42
	PERL Exercises
	Slide 44
	Slide 45
	Slide 46

