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16.1 Historical background

Fundamentals

In the early twentieth century the “elementary” particles
known were the proton, the electron and the photon. The
first extension of this set of particles occurred with the
neutrino hypothesis, first formulated by W. Pauli in his
famous letter to his “radioactive friends” in 1924. From
the theoretical side, the formulation of a theory of weak
interactions by Fermi in 1934 marked another milestone
in the development of our understanding. This set up for
the first time a framework, in which some of the funda-
mental questions on the role of hadrons versus leptons and
on the properties of particles and their interactions could
be formulated. This also resulted in a clear formulation of
“weak” versus “strong” interactions and the understand-
ing of interactions as an exchange of mediating particles.
In particular, Yukawa postulated the existence of such a
particle and triggered the search for what we now know
as the pion. At about the same time the muon was dis-
covered, and initially called the “µ meson”, however this
soon turned out to be distinct from the pion.

Although the the term “flavor” came much later, one
may mark the beginning of (quark) flavor physics by the
discovery of strange particles (Rochester and Butler, 1947).
Their decays into non-strange particles had lifetimes too
long to be classified as strong decays: this led to the intro-
duction of the strangeness quantum number (Gell-Mann,
1953), which is conserved in strong decays but may change
in a weak decay.

The subsequent proliferation of new particles could
nicely be classified and ordered by Gell Mann’s “eight-
fold way” (Gell-Mann, 1962), which was an extension of
the isospin symmetry to a symmetry based on the group
SU(3). However, none of the particles fitted into the fun-
damental representation of this group, although there were
various attempts such as Sakata’s model, in which the pro-
ton, the neutron and the Λ baryon formed the fundamen-
tal representation. Eventually this puzzle was resolved by

the postulate of quarks as the fundamental building blocks
of matter.

Strangeness, parity violation, and charm

The decays of the strange particles, in particular of the
kaons, paved the way for the further development of our
understanding. Before 1954, the three discrete symmetries
C (charge conjugation), P (parity) and T (time rever-
sal) were believed to be conserved individually, a conclu-
sion drawn from the well known electromagnetic interac-
tion. Based on this assumption, the so called θ-τ puzzle
emerged: Two particles (at that time called θ and τ , where
the latter is not to be confused with the third generation
lepton) were observed, which had identical masses and
lifetimes. However, they obviously had different parities,
since the θ particle decayed into two pions (a state with
even parity), and the τ particle decays into three pions (a
state with odd parity).

The resolution was provided by the bold assumption
by Lee and Yang (1956) that parity is not conserved in
weak interactions, and θ and τ are in fact the same par-
ticle, which we now call the charged kaon. Subsequently
the parity violating V − A structure of the weak interac-
tion was established and, on the experimental side, par-
ity violation was confirmed directly in β decays (Garwin,
Lederman, and Weinrich, 1957; Wu, Ambler, Hayward,
Hoppes, and Hudson, 1957). However, the combination of
two discrete transformations, namely CP , still seemed to
be conserved.

Another puzzle related to kaon decays was the relative
coupling strength. It tuned out that the coupling strength
of strangeness-changing processes is much smaller than
that of strangeness-conserving transitions. This finding
eventually led to the parameterization of quark mixing
by Cabibbo (1963). In modern language, the up quark u
couples to a combination d cos θC + s sin θC of the down
quark d and the strange quark s. The value θC ∼ 13◦

for the Cabibbo angle explained the observed pattern of
branching ratios in baryon decays.

Experiments at that time only probed the three light-
est quarks, and there was no known reason for the extreme
suppression of the flavor changing neutral current (FCNC)
decay K+ → π+ℓ+ℓ− with respect to the charged cur-
rent decay K+ → π0ℓ+ν, Γ (K+ → π+ℓ+ℓ−)/Γ (K+ →
π0ℓ+ν) ∼ 10−6. The resolution of this puzzle was found
by Glashow, Iliopoulos, and Maiani (1970): one includes
the charm quark, with the same quantum numbers as the
up quark, and coupling to the orthogonal combination
−d sin θC + s cos θC .

FCNC processes are suppressed by this “GIM mecha-
nism”. In fact, FCNC’s in the kaon system involve a tran-
sition of an s quark into a d quark. This can be achieved
by two successive charged current processes involving (in
the two-family picture) either the up or the charm quark
as an intermediate state. Taking Cabibbo mixing into ac-
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count, these amplitudes are

A(s→ d) = A(s→ u→ d) +A(s→ c→ d)

= sin θC cos θC [f(mu)− f(mc)],(16.1.1)

where f(m) is some smooth function of the massm. Hence,
if the up and charm quark masses were degenerate, K0 −
K0 mixing and other kaon FCNC processes would not oc-
cur.

However, the up and charm masses are not degenerate
and thus K0−K0 mixing can occur. Neglecting the small
up-quark mass, the mixing amplitude turns out to be

A(K → K) ∝ sin2 θC cos2 θC
m2

c

M2
W

. (16.1.2)

This implies that a mass difference ∆mK appears in the
neutral kaon system. From this mass difference (an expres-
sion analogous to Eq. 10.1.17) Gaillard and Lee (1974b)
could extract the prediction that the charm-quark mass
should be about mc ∼ 1.5 GeV, and it was one of the
great triumphs of particle physics when narrow resonances
with masses of about 3 GeV were discovered a few months
later (Aubert et al., 1974; Augustin et al., 1974): these
were identified as cc bound states. Around this time the
term “particle family” was coined, and the discovery of
the charm quark completed the second particle family; it
also introduced a 2× 2 quark mixing matrix into the phe-
nomenology of weak interactions.

CP violation and the Kobayashi-Maskawa mechanism

Almost ten years before the discovery of charm, CP vio-
lation was observed in the study of rare kaon decays by
Christenson, Cronin, Fitch, and Turlay (1964). This ef-
fect is difficult to accommodate for two families, but an
extension to three families allows it to be taken into ac-
count naturally. The “six-quark model” was proposed by
Kobayashi and Maskawa (1973), extending Cabibbo’s 2×2
quark mixing matrix into the 3 × 3 Cabibbo-Kobayashi-
Maskawa (CKM) matrix. The GIM mechanism for the six
quark model is implemented by the unitarity of the CKM
matrix.

While the observation of decays K0
L
→ 2π meant that

CP was violated, the data at that time only required
CP violation in mixing (see Section 16.6 for the classi-
fication of CP -violating effects). The observed strength
of CP violation in mixing, εK ≃ 2.3 × 10−3, was consis-
tent with the Kobayashi-Maskawa (KM) mechanism (El-
lis, Gaillard, and Nanopoulos, 1976; Pakvasa and Sug-
awara, 1976). However, this did not constitute a proof
that the KM mechanism was really the origin of the ob-
served CP violation; the measurement of the single pa-
rameter εK could not be used to test the KM mechanism.
One alternative explanation was offered by the super-weak
model of Wolfenstein (1964), where CP violation was due
to a new, very weak four-fermion interaction that changed
strangeness by 2 units (∆S = 2). This possibility was
ruled out by the observation of direct CP violation in

KL → ππ decays, Re(ε′K/εK) = (1.65 ± 0.26) × 10−3

(Alavi-Harati et al., 1999; Burkhardt et al., 1988; Fanti
et al., 1999). Nonetheless, convincing evidence for the KM
mechanism required the measurement of sin(2φ1) at the
B Factories.

With the discovery of the τ lepton in 1975 (Perl et al.,
1975) and of the bottom quark in 1977 (Herb et al., 1977)
it became clear that there is a third generation of quarks
and leptons. Furthermore, the bottom quark turned out
to be quite long-lived, indicating a small mixing angle be-
tween the first and second generation. This fact is the
experimental foundation of using B decays to study CP
violation, as well as for b tagging in high-pt physics.

The third generation remained incomplete for many
decades, since the top quark turned out to be quite heavy,
and a direct discovery had to wait until 1995, when it was
discovered at the Tevatron at Fermilab (Abachi et al.,
1995a; Abe et al., 1994). However, the first hint of the
large top-quark mass was the discovery of B0 − B0 oscil-
lations (also known as mixing) by ARGUS (Albrecht et al.,
1987b). The measured ∆md implied a heavy top with a
mass mt above 50 − 70 GeV, if the standard six quark
model was assumed (Bigi and Sanda, 1987; Ellis, Hagelin,
and Rudaz, 1987). The phenomenon of neutral meson mix-
ing is discussed in Chapter 10, while Section 17.5 discusses
results on B mixing from the B Factories.

In fact, if the top mass had been significantly smaller,
ARGUS could not have observed B0−B0 oscillations. The
GIM mechanism for down-type quarks leads generally to
suppression factors of the form

CKM Factor × 1

16π2

m2
t −m2

u

M2
W

(16.1.3)

and hence the GIM suppression for the bottom quark is
much weaker than in the up-quark sector, where the cor-
responding factor is

CKM Factor × 1

16π2

m2
b −m2

d

M2
W

. (16.1.4)

Hence FCNC decays of B-mesons have branching ratios
in the measurable region, while FCNC processes for D-
mesons are heavily suppressed.

The third particle family was completed by the dis-
covery of the τ neutrino as a particle distinct from the
electron and the muon neutrino by the DONUT collabora-
tion (Kodama et al., 2001). Although models with a fourth
particle generation are frequently considered as bench-
mark models for physics beyond the Standard Model, there
is no indication of a fourth family. On the contrary, from
the width of the Z boson precisely measured at LEP it
can be inferred that there is no further family with a neu-
trino lighter than 40 GeV, and the recent discovery of a
Higgs boson in the mass range of 125 GeV (Aad et al.,
2012; Chatrchyan et al., 2012b) rules out a large class of
fourth-generation models.
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16.2 CP violation and baryogenesis

Particle physics experiments of the past thirty years have
confirmed the Standard Model (SM) even at the quan-
tum level, including quark mixing and CP violation. How-
ever, the observed matter-antimatter asymmetry of the
universe indicates that there must be additional sources
of CP violation, since the amount of CP violation implied
by the CKM mechanism is insufficient to create the ob-
served matter-antimatter asymmetry.

In fact, the excess of baryons over antibaryons in the
universe

∆ = nB − n
B

(16.2.1)

is small compared to the number of photons: the ratio is
measured to be ∆/nγ ∼ 10−10. Although it is conceiv-
able that there might be regions in the universe consisting
of antimatter, just as our neighborhood consists of mat-
ter, no mechanism is known which could, from the Big
Bang, produce regions of matter (or antimatter) as large
as we observe today. Furthermore, searches have been per-
formed for sources of photons indicative of regions of mat-
ter and antimatter colliding. These searches failed to find
any large regions of antimatter.

The conditions under which a non-vanishing ∆ can
emerge dynamically from the symmetric situation ∆ =
0 have been discussed by Sakharov (1967). He identified
three ingredients

1. There must be baryon number violating interactions
Heff(∆B 6= 0) 6= 0.

2. There must be CP violating interactions. If CP were
unbroken, then we would have for every process i→ f
mediated by Heff(∆B 6= 0) the CP conjugate one with
the same probability

Γ (i→ f) = Γ (i→ f) (16.2.2)

which would erase any matter-antimatter asymmetry.
3. The universe must have been out of thermal equilib-

rium. Under the assumption of locality, causality, and
Lorentz invariance, CPT is conserved. Since in an equi-
librium state time becomes irrelevant on the global
scale, CPT reduces to CP , and the argument of point
2 applies.

In order to illustrate the first two Saharov conditions,
we employ a very simplistic example. Assume that in the
early universe, there was a particle X that could decay to
only two final states |f1〉 and |f2〉, with baryon numbers

N
(1)
B

and N
(2)
B

respectively, and decay rates

Γ (X → f1) = Γ0r and Γ (X → f2) = Γ0(1− r) ,
(16.2.3)

where Γ0 is the total width ofX. Taking the CP conjugate,
the particle X decays to the state f1 with baryon number

−N (1)
B

and f2 with baryon number −N (2)
B

; the rates are

Γ (X → f1) = Γ0r and Γ (X → f2) = Γ0(1− r),
(16.2.4)

where Γ0 is the same as for X due to CPT invariance.

The overall change ∆NB in baryon number induced
by the decay of an equal number of X and X particles is

∆NB = rN
(1)
B

+ (1− r)N
(2)
B

− rN
(1)
B

− (1− r)N
(2)
B

= (r − r)
(

N
(1)
B

−N
(2)
B

)

(16.2.5)

Thus ∆NB 6= 0 means that we have to have CP violation

(r 6= r) and a violation of baryon number (N
(1)
B

6= N
(2)
B

),
illustrating the first two conditions.

Sakharov’s paper remained mostly unnoticed until the
first formulation of Grand Unified Theories (GUTs). In
these theories, for the first time, all the necessary ingredi-
ents were present. In particular, baryon number violation
appears naturally since quarks and leptons appear in the
same multiplets of the GUT symmetry group. Further-
more, there are additional sources of CP violation, and a
phase transition takes place at the scaleMGUT, which has
to be quite high to prevent proton decay.

One may also consider electroweak baryogenesis. The
electroweak interaction provides CP violation through the
CKM mechanism, and the electroweak phase transition
has been thoroughly studied. The first ingredient is also
present, as the current corresponding to baryon number
is conserved only at the classical level: electroweak quan-
tum effects violate baryon number, but still conserve the
difference B− L of baryon and lepton number. However,
although all the ingredients are present, this cannot ex-
plain ∆. In particular, the CKM CP violation is too small
by several orders of magnitude.

Given the firm evidence for non-vanishing neutrino
masses, there could be new sources of CP violation in the
lepton sector, and even (although there is no evidence for
this as yet) lepton-number violation. This could lead to
violation of baryon number via leptogenesis, with the sur-
plus of leptons transferred to the baryonic sector through
(B− L)-conserving interactions.

In any case, an additional source(s) of CP violation
is needed, beyond the phase of the CKM matrix (which
is explained in the next section), in order to explain the
matter-antimatter asymmetry of the universe. The search
for this new interaction is one of the main motivations for
flavor-physics experiments.

16.3 CP violation in a Lagrangian field theory

The SM is formulated as a quantum field theory based on
a Lagrangian derived from symmetry principles. To this
end, the (hermitian) Lagrangian of the SM is given in
terms of scalar operators Oi with couplings ai

L(x) =
∑

i

(

aiOi(x) + a∗iO†
i (x)

)

, (16.3.1)

where the Oi are composed of the SM quark, lepton, and
gauge fields. It is straightforward to verify that CP con-
servation implies that all couplings ai can be made real
by suitable phase redefinitions of the fields composing the
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Oi. In turn, CP is violated in a Lagrangian field theory if
there is no choice of phases that renders all ai real.

In the SM there are in principle two sources of CP
violation. The so-called “strong CP violation” originates
from special features of the QCD vacuum, resulting in a
contribution of the form

LstrongCP = θ
αS

8π
Gµν,aG̃a

µν (16.3.2)

where Gµν (G̃µν) is the (dual) strength of the gluon field.
This term is P and CP violating due to its pseudoscalar
nature. However, a term such as Eq. (16.3.2) will have a
strong impact on the electric dipole moment (EDM) of the
neutron, dN ∼ θ × 10−15 e cm. In combination with the
current limit on the neutron EDM of dN < 0.29 × 10−25

e cm, this yields a stringent limit, θ ≤ 10−10. However,
the theoretical reason for its smallness has not yet been
discovered. This is known as the “strong CP problem” (see
for example Cheng, 1988; Kim and Carosi, 2010); we shall
ignore this in what follows by setting θ = 0.

The second source of CP violation is the CKM matrix.
It turns out that all terms in the SM Lagrangian are CP
invariant except for the charged current interaction term

Hcc =
g√
2

(

uL cL tL
)

VCKMγ
µ





dL
sL
bL



W+
µ . (16.3.3)

Under a CP transformation we have

(

uL cL tL
)

VCKMγ
µ





dL
sL
bL



W+
µ (16.3.4)

CP−→
(

dL sL bL
)

V T
CKMγ

µ





uL
cL
tL



W−
µ (16.3.5)

and hence the combination Hcc+H
†
cc appearing in the SM

Lagrangian is CP invariant, if

V T
CKM = V †

CKM or VCKM = V ∗
CKM. (16.3.6)

This statement refers to a specific phase convention for
the quark fields; in general terms it implies that in the
CP -invariant case, the CKM matrix can be made real by
an appropriate phase redefinition of the quark fields.

16.4 The CKM matrix

The CKM matrix VCKM appearing in Eq. (16.3.3) is ex-
plicitly written as

VCKM =





Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb



 . (16.4.1)

Here the Vij are the couplings of quark mixing transitions
from an up-type quark i = u, c, t to a down-type quark
j = d, s, b.

In the SM the CKM matrix is unitary by construction.
Using the freedom of phase redefinitions for the quark
fields, the CKM matrix has (n− 1)2 physical parameters
for the case of n families. Out of these, n(n − 1)/2 are
(real) rotation angles, and ((n − 3)n + 2)/2 are phases,
which induce CP violation. For n = 2, no CP violation
is possible, while for n = 3 a single phase appears. This
is the unique source of CP violation in the SM, once the
possibility of strong CP violation is ignored.

The CKM matrix for 3 families may be represented by
three rotations and a matrix generating the phase

U12 =





c12 s12 0
−s12 c12 0
0 0 1



 ,

U13 =





c13 0 s13
0 1 0

−s13 0 c13



 ,

U23 =





1 0 0
0 c23 s23
0 −s23 c23



 ,

Uδ =





1 0 0
0 1 0
0 0 e−iδ13



 , (16.4.2)

where cij = cos θij , sij = sin θij , and δ is the complex
phase responsible for CP violation; by convention the mix-
ing angles θij are chosen to lie in the first quadrant so that
the sij and cij are positive. Then (Chau and Keung, 1984)

VCKM = U23U
†
δU13UδU12

=





c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13



 .

(16.4.3)

This is the representation used by the PDG (Beringer
et al., 2012).

The elements of the CKMmatrix exhibit a pronounced
hierarchy. While the diagonal elements are close to unity,
the off-diagonal elements are small, such that e.g. Vud ≫
Vus ≫ Vub. In terms of the angles θij we have θ12 ≫
θ23 ≫ θ13. This fact is usually expressed in terms of the
Wolfenstein parameterization (Wolfenstein, 1983), which
can be understood as an expansion in λ = |Vus|. It reads
up to order λ3

VCKM =





1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1



+O(λ4).

(16.4.4)

The parameters A, ρ and η are assumed to be of order
one. When using this parameterization, one has to keep
in mind that unitarity is satisfied only up to order λ4. As
it turns out that both ρ and η are also of order λ, the
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extension to higher orders becomes non-trivial, and one
has to consider redefining the parameters accordingly; this
has been studied by Ahn, Cheng, and Oh (2011).

One can obtain an exact parameterization of the CKM
matrix in terms of A, λ, ρ, and η, for example, by following
the convention of Buras, Lautenbacher, and Ostermaier
(1994), where

λ = s12, (16.4.5)

A = s23/λ
2, (16.4.6)

Aλ3(ρ− iη) = s13e
−iδ, (16.4.7)

and by substituting Eqs (16.4.5) through (16.4.7) into
Eq. (16.4.3), while noting that sin2 θ = 1− cos2 θ. Such a
parameterization is described in Section 19.2.1.3 to illus-
trate CP violation in the charm sector.

Sometimes a slightly different convention for the Wolfen-
stein parameters is used, with parameters denoted ρ and
η. These parameters were defined at fixed order by Buras,
Lautenbacher, and Ostermaier (1994); the modern defini-
tion (Charles et al., 2005),

ρ+ iη = −VudV
∗
ub

VcdV ∗
cb

, (16.4.8)

holds to all orders. The difference with the parameteriza-
tion defined above appears only at higher orders in the
Wolfenstein expansion; the relation between this scheme
and the one defined in (16.4.5–16.4.7) is given by

ρ+ iη = (ρ+ iη)

√
1−A2λ4√

1− λ2[1−A2λ4(ρ+ iη)]
. (16.4.9)

16.5 The Unitarity Triangle

The unitarity relations VCKM · V †
CKM = 1 and V †

CKM ·
VCKM = 1 yield six independent relations corresponding
to the off-diagonal zeros in the unit matrix. They can be
represented as triangles in the complex plane; each trian-
gle has the same area, reflecting the fact that (with three
families) there is only one irreducible phase. A non-trivial
triangle — one with angles other than 0 or π — indicates
CP violation, proportional to the triangles’ common area.
Bigi and Sanda (2000) provide a detailed discussion of the
various triangles, their interpretation, and the possibilities
to probe them. Only two triangles have sides of compara-
ble length, which means that they are of the same order in
the Wolfenstein parameter λ. The corresponding relations
are

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 (16.5.1)

VudV
∗
td + VusV

∗
ts + VubV

∗
tb = 0. (16.5.2)

Inserting the Wolfenstein parameterization, both relations
turn out to be identical, up to terms of order λ5; the
apex of the Unitarity Triangle is given by the coordi-
nate (ρ, η). The three sides of this triangle (Fig. 16.5.1) —
usually referred to as “the” Unitarity Triangle— control

semi-leptonic and non-leptonic Bd transitions, including
Bd−Bd oscillations. In order to obtain the triangle shown
in Fig 16.5.1, Eq. (16.5.1) is divided by VcdV

∗
cb so that the

base of the triangle is of unit length. Due to the sizable
angles, one expects large CP asymmetries in B decays in
the SM; this was actually realized before the discovery of
“long” B lifetimes. Note that in both unitarity-triangle
relations CKM matrix elements related to the top quark
appear; in particular Vtd and Vts can be accessed only
indirectly via FCNC decays of bottom quarks.

V   Vud      ub
*

V   Vcd      cb
*

V   Vtd      tb
*

V   Vcd      cb
*

q!"!`q!"!a

q!"!_

!#$%&'!%$%&'

'!l$d&

1

2

_ _

3

 

Figure 16.5.1. The Unitarity Triangle.

The angles of the Unitarity Triangle are defined as

φ1 = β ≡ arg [−VcdV ∗
cb/VtdV

∗
tb] , (16.5.3)

φ2 = α ≡ arg [−VtdV ∗
tb/VudV

∗
ub] , (16.5.4)

φ3 = γ ≡ arg [−VudV ∗
ub/VcdV

∗
cb] , (16.5.5)

where this definition is independent of the specific phase
choice expressed in Eq. (16.4.3). Different notation con-
ventions have been used in the literature for these angles.
In particular the BABAR experiment has used α, β, and
γ, whereas the Belle experiment has reported results in
terms of φ2, φ1, and φ3, respectively. We use the latter for
brevity when discussing results in later sections.

The presence of CP violation in the CKM matrix im-
plies non-trivial values for these angles (φi 6= 0◦, 180◦),
corresponding to a non-vanishing area for the Unitarity
Triangle. In fact, all the triangles that can be formed from
the unitarity relation have the same area, which is propor-
tional to the quantity

∆ = ImV ∗
csVusVcdV

∗
ud (16.5.6)

which is independent of the phase convention. Note that
all other, rephasing invariant fourth order combinations of
CKM matrix elements, which cannot be reduced to prod-
ucts of second order invariants, can be related to ∆, which
is thus unique.

Furthermore, the phase in the CKM matrix could also
be removed, if the masses of either two up-type quarks or
two down-type quarks were degenerate. In summary, the
presence of CP violation is equivalent to (Jarlskog, 1985)

J = det[Mu , Md]

= 2i∆× (mu −mc)(mu −mt)(mc −mt)

× (md −ms)(md −mb)(ms −mb) (16.5.7)
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being non-vanishing.
The SM allows us to construct “the” Unitarity Tri-

angle by measuring its angles or its sides or any combi-
nations of them. Any discrepancy between the observed
and predicted values indicates a manifestation of dynam-
ics beyond the SM. Clearly this requires good control of
experimental and theoretical uncertainties, both in their
CP sensitive and insensitive rates.

Measurements of the magnitudes of CKM matrix el-
ements Vub and Vcb can be found in Section 17.1, and
measurements of Vtd and Vts in Section 17.2. Measure-
ments of the angles φ1, φ2, and φ3 are discussed in Sec-
tions 17.6, 17.7, and 17.8 respectively. It is possible to
perform global fits, using data from many decay processes
to over-constrain our knowledge of the CKM mechanism.
Given the lack of knowledge of the determination of the
apex of the Unitarity Triangle, these global fits are often
expressed in terms of constraints on the (ρ, η) plane. Some
experimental results require input from Lattice QCD cal-
culations in order to be used in a global fit. These global
fits are discussed in Chapter 25, both in the context of the
SM (Section 25.1) and allowing for physics beyond the SM
(Section 25.2).

It is exactly some of the measurements described in
Chapter 17 and further in Section 25.1 which were ad-
dressed in (Nobelprize.org, 2010) among experimental ver-
ifications of the Kobayashi-Maskawa mechanism in the
scientific background to the 2008 Nobel Prize in Physics
awarded to M. Kobayashi and T. Maskawa: ”The respec-
tive collaborations BABAR and BELLE have now mea-
sured the CP violation in remarkable agreement with the
model ... and all experimental data are now in impressive
agreement with the model ...”.

16.6 CP violation phenomenology for B

mesons

Since CP violation is due to irreducible phases of coupling
constants, it becomes observable through interference ef-
fects. The simplest example is an amplitude consisting of
two distinct contributions

Af = λ1〈f |O1|B〉+ λ2〈f |O2|B〉 (16.6.1)

where λ1,2 are (complex) coupling constants (in our case
combinations of CKM matrix elements) and 〈f |O1,2|B〉
are matrix elements of interaction operators between the
initial and final state.

The CP conjugate is the process B → f , yielding

Af = λ∗1〈f |O†
1|B〉+ λ∗2〈f |O†

2|B〉. (16.6.2)

The matrix elements of O(†)
1,2 involve only strong interac-

tions, which we assume to be CP -invariant. Hence we have

〈f |O†
1|B〉 = 〈f |O1|B〉 and 〈f |O†

2|B〉 = 〈f |O2|B〉.
(16.6.3)

Thus for the CP asymmetry we find

ACP (B → f) ≡ Γ (B → f)− Γ (B → f)

Γ (B → f) + Γ (B → f)
(16.6.4)

∝ 2 Im[λ1λ
∗
2] Im[〈f |O1|B〉〈f |O2|B〉∗].

Consequently, in order to create CP violation, there has
to be — aside from the “weak phase” due to the complex
phases of the CKM matrix — also a “strong phase”, i.e.
a phase difference between the matrix elements 〈f |O1|B〉
and 〈f |O2|B〉. In the SM these two contributions corre-
spond to different diagram topologies. In many cases, one
can identify tree-level contributions which carry different
CKM factors compared to loop (penguin) contributions.
CP violation then emerges from the interference of “trees”
and “penguins”.

In the following we are going to consider decays into
CP eigenstates f in which case we have f = f . For a
quantum-coherent pair of neutralB-mesons (like the color-
singlet B0B0 pair from Υ (4S) decay) the time evolution
generates a phase difference ∆m∆t, which acts like the
strong phase difference between the amplitudes for B → f
and for B → B → f . Hence we make use of the time-
dependent CP asymmetry

AB→f
CP (∆t) ≡ Γ (B0(∆t) → f)− Γ (B0(∆t) → f)

Γ (B0(∆t) → f) + Γ (B0(∆t) → f)

= SB→f sin (∆md ∆t)− CB→f cos (∆md ∆t) .
(16.6.5)

The derivation (see the discussion in Chapter 10 leading
to Eq. 10.2.8) neglects the small lifetime difference ∆Γ in
the Bd system; the expressions for S and C can be found
in Eqs (10.2.4) and (10.2.5).

We may distinguish three different types of CP vi-
olation according to the various sources from which it
emerges. CP violation in decays, sometimes referred to as
direct CP violation, stems from different rates for a pro-
cess and for its CP conjugate: hence we have |Af/Af | 6= 1.
This contribution leads to CB→f 6= 0: it is already present
at ∆t = 0, and remains in time-integrated measurements.
CP violation in the mixing emerges in cases where we
have |p/q| 6= 1.49 One observable related to this is the
semileptonic decay asymmetry aSL, which is the asym-
metry between the decay rate of B0 → X−ℓ+νℓ and the
CP conjugate process. Finally, mixing-induced CP viola-
tion, sometimes also called CP violation in interference
between a decay without mixing and a decay with mixing
occurs for Imλ 6= 0, in which case interference of the am-
plitudes B → f and B → B → f leads to CP violation.50

49 For a definition of the quantities p, q, and λ, we refer to
Chapter 10, where time evolution is considered.
50 In kaon physics sometimes the notion indirect CP viola-

tion is used for saying that the parameter ǫ is non-vanishing.
Comparing this with the definitions given here, non-vanishing
ǫ corresponds to a combination of |q/p| 6= 1 and |Af/Af | 6= 1.
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In the Bd system we have to a very good approxima-
tion51 q

p
= exp(−2iφ1) . (16.6.6)

This follows from Eq. (10.1.19) and by inspection of the
box diagram contributing to the Bd mixing (Fig. 10.1.1),
from which it can be seen that the CKM matrix elements
appearing in the amplitude yield φM12

= 2φ1. Hence in all
cases where A = A, we find |λ| = 1 and Imλ = − sin(2φ1),
leading to

CB→f = 0 and SB→f = − sin(2φ1). (16.6.7)

This holds for the golden mode B → J/ψKs where there
is no relative weak phase between A and A. However, if
there appears a relative weak phase in the decay ampli-
tudes, then we may still have |A| = |A| and hence |λ| = 1,
and thus no direct CP violation. For example, the tree
amplitude in B → ππ carries a weak phase e−iφ3 which
(neglecting penguin contributions) would lead to

λ = exp(−2i(φ1 + φ3)) = exp(+2iφ2). (16.6.8)

However, the penguin contribution in B → ππ cannot be
neglected; in particular it leads to |λ| 6= 1 and to direct
CP violation in these decays.

In general we have the “unitarity relation” between
the quantities SB→f and CB→f ,

(

CB→f
)2

+
(

SB→f
)2

= 1−
(

DB→f
)2 ≤ 1 (16.6.9)

where

DB→f =
2Reλ

1 + |λ|2 . (16.6.10)

However, in the limit of vanishing lifetime difference the
time-dependent CP asymmetry does not depend onDB→f ,
and hence a direct measurement of this quantity in the Bd

system is difficult.

51 This relation depends on the phase conventions used. It
holds in the convention used in (16.4.3).


