Flavour Physics and CP Violation

Post-FPCP 2018 Summer School

IIT Hyderabad, India

Lecture 3

Short recap

Angles of the unitarity triangle

The Unitarity Triangle [recap]

CPV Types for the B Meson System [recap]

Define the quantity
$$\lambda$$
: $\lambda_{f_{CP}} = \frac{q}{p} \cdot \frac{A_{f_{CP}}}{A_{f_{CP}}}$

- 1. Indirect CP violation, or CPV in the mixing: $|q/p| \neq 1$
- 2. Direct CP violation, or CPV in the decays: $\overline{|A|A|} \neq 1$ both neutral and charged B
- 3. CP violation in interference between mixing and decay: $Im\lambda \neq 0$ neutral B

If we consider that both B⁰ and B⁰ can decay to the same final state and considering here a final state that is a CP eigenstate, then the time evolution of the physical system becomes:

$$f(B^0_{phys} o f_{CP}, \Delta t) = rac{\Gamma}{4} e^{-\Gamma |\Delta t|} \left[1 - rac{m{S_{f_{CP}}}}{S_{f_{CP}}} \sin\left(\Delta m_d \Delta t
ight) + rac{m{C_{f_{CP}}}}{C_{f_{CP}}} \cos\left(\Delta m_d \Delta t
ight)
ight]$$

$$f(ar{B}^0_{phys} o f_{CP}, \Delta t) = rac{\Gamma}{4} e^{-\Gamma |\Delta t|} \left[1 + rac{m{S}_{f_{CP}} \sin\left(\Delta m_d \Delta t
ight) - m{C}_{f_{CP}} \cos\left(\Delta m_d \Delta t
ight)
ight]$$

• direct CP violation $C \neq 0$ $C_f(=-A_f) = \frac{1 - |\lambda_{f_{CP}}|^2}{1 + |\lambda_{f_{CP}}|^2}$ • CP violation in interference $S \neq 0$ $S_f = \frac{2Im\lambda_{f_{CP}}}{1 + |\lambda_{f_{CP}}|^2}$ β/ϕ_1 angle

Theoretically cleaner (SM uncertainties $\sim 10^{-2}$ to 10^{-3}) \rightarrow tree dominated decays to Charmonium + K⁰ final states.

leading-order tree decays to $c\overline{c}s$ final states

here the CKM elements contributing are $V_{cb}V_{cs}^*$ that in our Wolfenstein CKM parameterisation have no phase. The CP conjugated case is also leading to (about) the same final state:

 $\beta \equiv \arg \left[-V_{\rm cd}V_{\rm cb}^*/V_{\rm td}V_{\rm tb}^*\right]$

sin2 β in golden b \rightarrow ccs modes

because both B and B can decay in this common final state, this can interfere with the oscillation diagram:

M.Bona – Flavour Physics amd CP Violation – lecture 3

 $\beta \equiv \arg \left[-V_{\rm cd}V_{\rm cb}^*/V_{\rm td}V_{\rm tb}^*\right]$

 $\beta \equiv \arg \left[-V_{\rm cd}V_{\rm cb}^*/V_{\rm td}V_{\rm tb}^*\right]$

sin2 β in golden b \rightarrow ccs modes

Why J/ $\psi K_{S,L}$ mode is golden

possible penguin contributions:

 $\beta \equiv \arg \left[-V_{\rm cd}V_{\rm cb}^*/V_{\rm td}V_{\rm tb}^*\right]$

where x can be any up-type quark hence this counts for three penguin diagrams

can this be a problem?

 $\beta \equiv \arg \left[-V_{\rm cd}V_{\rm cb}^*/V_{\rm td}V_{\rm tb}^*\right]$

Why $J/\psi K_{S,L}$ mode is golden

using this unitary condition (2nd \rightleftharpoons 3rd family), we eliminate V_{tb}V*_{ts}

$$V_{ub}V_{us}^{*} + V_{cb}V_{cs}^{*} + V_{tb}V_{ts}^{*} = 0 \quad \rightarrow \quad V_{tb}V_{ts}^{*} = -V_{ub}V_{us}^{*} - V_{cb}V_{cs}^{*}$$

thus the amplitude is:

$sin2\beta$ in golden b $\rightarrow ccs$ modes

 J/ψ , $\psi(2S)$, χ_{c1} \overline{B}^0 \odot branching fraction: O (10⁻³) $\overline{K}, \overline{K}^*$ the colour-suppressed tree dominates d and the penguin pollution has the same weak phase of the tree or is CKM suppressed $S \sim sin 2\beta$ • $A_{CP}(t) = rac{\Gamma(B^0(t) \to f_{CP}) - \Gamma(B^0(t) \to f_{CP})}{\Gamma(\bar{B}^0(t) \to f_{CP}) + \Gamma(B^0(t) \to f_{CP})}$ $\mathbf{C} \sim \mathbf{0}$ Interpretion of the second • model-independent data-driven estimation from $J/\psi\pi^0$ data: M.Ciuchini et al. $\Delta S_{J/\psi K^0} = S_{J/\psi K^0} - \sin 2\beta = -0.01 \pm 0.01$ arXiv:1102.0392 [hep-ph]. • model-dependent estimates of the u- and c- penguin biases $\Delta S_{J/\psi K^0} = S_{J/\psi K^0} - \sin 2\beta \sim O(10^{-3})$ H.Li, S.Mishima JHEP 0703:009 (2007) $\Delta S_{J/\psi K0} = S_{J/\psi K0} - \sin 2\beta \sim O(10^{-4})$ H.Boos et al.

Phys. Rev. D73, 036006 (2006)

 $\beta \equiv \arg \left[-V_{\rm cd}V_{\rm cb}^*/V_{\rm td}V_{\rm tb}^*\right]$

$sin2\beta$ in golden b \rightarrow ccs modes

Sine term has a non-zero coefficient and this tells us that there is CP violation in the interference between mixing and decay amplitudes in ccs decays.

Heavy FLavour AVeraging (HFLAV) group for $J/\psi K_{S,L}$

S = sin 2β = 0.690 ± 0.018

 $\beta \equiv \arg \left[-V_{\rm cd}V_{\rm cb}^*/V_{\rm td}V_{\rm tb}^*\right]$

$sin2\beta$ in b \rightarrow ccs modes

angle β in b \rightarrow ccs modes

Searching for new physics via other b \rightarrow ccs modes

- ⊙ sin2β has been measured to O(1°) accuracy in b → ccs decays.
- ◎ Can use this to search for signs of New Physics (NP) if:
 - Identify a rare decay sensitive to $sin2\beta$ (loop dominated process).
 - Measure S precisely in that mode (S_{eff}) .
 - Control the theoretical uncertainty on the Standard Model 'pollution' (ΔS_{SM}).
 - Compute $\Delta S_{\rm NP} = S_{eff} S_{c\overline{c}s} \Delta S_{\rm SM}$
- ◎ In the presence of NP: $\Delta S_{NP} \neq 0$

- New heavy particles can introduce new amplitudes affecting physical observables of loop dominated processes.
- Observables affected include
 branching fractions, CP asymmetries,
 forward backward asymmetries.. etc..
- The Standard Model contributions need to be understood

α/φ_2 angle

$$\alpha \equiv \arg\left[-V_{\rm td}V_{\rm tb}^*/V_{\rm ud}V_{\rm ub}^*\right]$$

b \rightarrow und transitions with possible loop contributions. Extract α using • SU(2) Isospin relations.

 Interference between box and tree results in an asymmetry that is sensitive to α in B → hh decays: h = π, ρ, ...

This is again a case of interference between mixing and decay.

This scenario is equivalent to the measurement of $\sin 2\beta$ in Charmonium decays ... but in this case it is more complicated..

CP violation: α

◎ Interference between box and tree results in an asymmetry that is sensitive to α in B → hh decays: h = π , ρ , ...

In this case the penguin diagram is not CKM suppressed so it spoils the clean measurement of the CP violation effect

CP violation: α

◎ Interference between box and tree results in an asymmetry that is sensitive to α in B → hh decays: h = π , ρ , ...

◎ Need to determine $\delta_{\alpha} = \alpha_{eff} - \alpha$ [P/T is different for each final state]

- Several recipes describe how to bound penguins and measure α .
 - \odot These are based on SU(2) [or SU(3)] symmetry.

- Use charged and neutral B decays to the hh final state to constrain the penguin contribution and measure α.
- M. Gronau and D. London, **65**, 3381 (1990)
- Use charged and neutral B decays to the ρπ final state to constrain the penguin contribution and measure α. Remove any overlapping regions in
- Regions of the Dalitz plot with intersecting ρ bands are included in this analysis; this helps resolve ambiguities.

A. Snyder and H. Quinn, Phys. Rev. Lett. D 48, 2139 (1993);
H. Quinn and J Silva, Phys. Rev. Lett. D 62, 054002 (2000).

H. Lipkin et al., Phys. Rev. Lett. D 44, 1454 (1991)

Isospin analysis

 $\boldsymbol{\alpha} \text{:}$ collecting the ingredients

from $\alpha_{\text{eff}} \rightarrow$ to α : isospin analysis

Channel	Decay Amplitudes
$\pi\pi$	$A(B^+ \to \pi^+ \pi^0) = \frac{\sqrt{3}}{2} A_{3/2,2}$
	$\frac{1}{\sqrt{2}}A(B^0 \to \pi^+\pi^-) = \frac{1}{\sqrt{12}}A_{3/2,2} - \sqrt{\frac{1}{6}}A_{1/2,0}$
	$A(B^0 \to \pi^0 \pi^0) = \frac{1}{\sqrt{3}} A_{3/2,2} + \sqrt{\frac{1}{6}} A_{1/2,0}$

- $B \rightarrow \pi^{+}\pi^{-}$, $\pi^{+}\pi^{0}$, $\pi^{0}\pi^{0}$ decays are connected from isospin relations
- $\pi \pi$ states can have I = 2 or I = 0
 - \Rightarrow the gluonic penguins contribute only to the I = 0 state (Δ I=1/2)
 - ⇒ $\pi^+\pi^0$ is a pure I = 2 state (Δ I = 3/2) and it gets contribution only from the tree diagram

Isospin analysis

 $\pi\pi$

Easy to isolate signal for $\pi^+\pi^-$ and $\pi^+\pi^0$ as these modes are \odot relatively clean and have relatively large B ~ O(5 $\times 10^{-6}$).

- No tracks in the final state to provide vertex info.
- $B^0 \rightarrow \pi^0 \pi^0 \rightarrow \gamma \gamma \gamma \gamma \gamma$ has a large ΔE resolution.
 - \triangleright Possible to separate flavour tags to measure C⁰⁰. This information completes the set of information required for an Isospin analysis.

 $B \rightarrow \pi \pi$

M.Bona – Flavour Physics amd CP Violation – lecture 3

$B \rightarrow \pi \pi$

• Inputs from:
$$B^0 \to \pi^+ \pi^-$$

 $B^+ \to \pi^+ \pi^0$
 $B^0 \to \pi^0 \pi^0$

eight solutions to the isospin system: shown here a case with additional information can be used: to reduce the degeneracy of the solutions and also to keep the amplitudes to go to infinity (unphysical)

for example Bs to KK (assuming SU(3) and a big uncertainty on that) can put an upper limit on the penguin amplitude

M.Bona – Flavour Physics amd CP Violation – lecture 3

$B\to~\rho\rho$

- Vector-Vector modes: angular analysis required to determine the CP content. L=0,1,2 partial waves:
 - Iongitudinal: CP-even state
 - Itransverse: mixed CP states
- $\textcircled{\begin{subarray}{c} \bullet \ }$ +-: two π^{0} in the final state
- $\ensuremath{\textcircled{}}$ wide ρ resonance

but

- BR 5 times larger with respect to $\pi\pi$
- penguin pollution smaller than in $\pi\pi$
- ${\ensuremath{ \bullet }}\ \rho$ are almost 100% polarized:
 - almost a pure CP-even state

0

• dominant decay $\rho\pi$ is not a CP eigenstate

- 5 amplitudes need to be considered: \odot B⁰ $\rightarrow \rho^{+}\pi^{-}, \rho^{-}\pi^{+}, \rho^{0}\pi^{0}$ and B⁺ $\rightarrow \rho^{+}\pi^{0}, \rho^{0}\pi^{+}$
 - Isospin pentagon \odot
- or time-dependent dalitz analysis: α extraction together with the strong phases exploiting the amplitude interference:
 - © interference at equal massessquared give information on the strong phases between resonances

γ/φ_3 angle

$$\gamma \equiv \arg\left[-V_{\rm ud} V_{\rm ub}^*\right] V_{\rm cd} V_{\rm cb}^*$$

 $b \rightarrow c \text{ interfering with } b \rightarrow u$ $B \rightarrow D^{(*)}K^{(*)}$ $B^{0} \rightarrow D^{-}K^{0}\pi^{+}$ $B^{0} \rightarrow D^{(*)}\pi$ $B^{0} \rightarrow D^{(*)}\rho$ + charmless $\frac{V_{ud} V_{ub}^{*}}{V_{cd} V_{cb}^{*}}$

Extract γ using $B \rightarrow D^{(*)}K^{(*)}$ final states using:

- GLW: Use CP eigenstates of D^o.
- ADS: Interference between doubly suppressed decays.
- GGSZ: Use the Dalitz structure of $D \rightarrow K_s h^+h^-$ decays.

Measurements using neutral D mesons ignore D mixing.

 D^(*)K^(*) decays: from BRs and BR ratios, no time-dependent analysis, just rates
 the phase γ is measured exploiting interferences: two amplitudes leading to the same final states
 some rates can be really small: ~ 10⁻⁷

Sensitivity to γ : the ratio $r_{\scriptscriptstyle B}$

$$\begin{array}{ll} \mathsf{GLW}(\textit{Gronau, London, Wyler}) \text{ method:} & \mathsf{more sensitive to } r_{\mathsf{B}} \\ \mathsf{uses the CP eigenstates } \mathsf{D}^{(*)0}{}_{\mathsf{CP}} \text{ with final states:} \\ \mathsf{K}^+\mathsf{K}^-, \, \pi^+\pi^- \, (\mathsf{CP}\text{-}\mathsf{even}), \, \mathsf{K}_{\mathsf{s}}\pi^0 \, (\omega, \varphi) \, (\mathsf{CP}\text{-}\mathsf{odd}) \\ R_{CP\pm} = 1 + r_B^2 \pm 2r_B \cos\gamma\cos\delta_B \quad A_{CP\pm} = \frac{\pm 2r_B\sin\gamma\sin\delta_B}{1 + r_B^2 \pm 2r_B\cos\gamma\cos\delta_B} \\ \mathsf{ADS}(Atwood, Dunietz, Soni) \text{ method: } \mathsf{B}^0 \text{ and } \overline{\mathsf{B}}^0 \text{ in the same} \\ \mathsf{final state with } \mathsf{D}^0 \to \mathsf{K}^+\pi^- \, (\mathsf{suppr.}) \text{ and } \overline{\mathsf{D}}^0 \to \mathsf{K}^+\pi^- \, (\mathsf{fav.}) \\ R_{ADS} = r_B^2 + r_{DCS}^2 + 2r_B r_{DCS}\cos\gamma\cos(\delta_B + \delta_D) \end{array}$$

the most sensitive way to γ

 $D^{\scriptscriptstyle 0}$ Dalitz plot with the decays $B^{\scriptscriptstyle -} \to D^{(^*)0}[K_{\scriptscriptstyle S}\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}]~K^{\scriptscriptstyle -}$

three free parameters to extract: γ , $r_{\scriptscriptstyle B}$ and $\delta_{\scriptscriptstyle B}$

y: GLW Method

- GLW Method: Study $B^{\scriptscriptstyle +} \to D_{\scriptscriptstyle CP}{}^{\scriptscriptstyle 0}X^{\scriptscriptstyle +}$ and $B^{\scriptscriptstyle +} \to \overline{D}X^{\scriptscriptstyle +} + cc$ ($\overline{D}{}^{\scriptscriptstyle 0} \to K^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$)
- X^+ is a strangeness one meson e.g. a K^+ or K^{*+} .
- D_{CP}^{0} is a CP eigenstate (use these to extract γ):

$$D_{CP=+1}^{0} = K^{+}K^{-}, \pi^{-}\pi^{+}$$

$$D_{CP=+1}^{0} = K_{S}^{0}\pi^{0}, K_{S}^{0}\omega, K_{S}^{0}\phi$$

$$r_{B}, \gamma_{E} \text{ and } \delta$$

$$egin{aligned} R_{CP_{\pm}} = & rac{BF(B^- o D_{\pm}^0 K^-) + BF(B^+ o D_{\pm}^0 K^+)}{BF(B^- o D^0 K^-) + BF(B^+ o D^0 K^+)} = 1 + r_B^2 \pm 2r_B \cos \delta \cos \gamma \ A_{CP_{\pm}} = & rac{BF(B^- o D_{\pm}^0 K^-) - BF(B^+ o D_{\pm}^0 K^+)}{BF(B^- o D_{\pm}^0 K^-) + BF(B^+ o D_{\pm}^0 K^+)} = \pm 2r_B \sin \delta \sin \gamma / R_{CP_{\pm}} \end{aligned}$$

- The precision on γ is strongly dependent on the value of r_B .
 - ▷ $r_B \sim 0.1$ as this is a ratio of Cabibbo suppressed to Cabibbo allowed decays and also includes a colour suppression factor for B⁺→D^(*)K^(*) b→u decays.
- Measurement has an 8-fold ambiguity on γ .

Gronau, London, Wyler, PLB253 p483 (1991).

1 1

y: ADS Method

- $\hfill ADS$ Method: Study $B^{\pm,0} \to D^{(\star)0} \; K^{(\star)\pm}$
- Reconstruct doubly suppressed decays with common final states and extract γ through interference between these amplitudes:

• γ extracted using ratios of rates:

$$r_{B}^{(*)} = \left| \frac{A(B^{-} \to \overline{D}^{(*)0}K^{-})}{A(B^{-} \to D^{(*)0}K^{-})} \right|$$
$$r_{D} = \left| \frac{A(D^{0} \to K^{+}\pi^{-})}{A(D^{0} \to K^{-}\pi^{+})} \right|$$

 $\odot \ \delta^{(*)} = \delta^{(*)}{}_{\mathsf{B}} + \delta_{\mathsf{D}}$

 ${}^{\scriptsize (\!\circ\!)}$ is the sum of strong phase differences

between the two B and D decay amplitudes.

 \odot r_D and r_B are measured in B and charm factories.

Attwood, Dunietz, Soni, PRL 78 3257 (1997)

 ${\color{black} {\scriptstyle 0}} \delta_{\text{D}}$ is measured by CLEO-c

- GGSZ ("Dalitz") Method: Study $D^{(*)0}K^{(*)}$ using the $D^{(*)0} \rightarrow K_s h^+h^-$ Dalitz structure to constrain γ . (h = π , K)
 - ◎ Self tagging: use charge for B[±] decays or K^(*) flavour for B⁰ mesons. $A(B^{\pm} \to (K_S^0 h^+ h^-)_D K^{\pm}) \propto f(m_+^2, m_-^2) + f(m_-^2, m_+^2) r_B e^{i(\delta_B \pm \gamma)}$

where $m_{\pm} = m_{K_S^0 h^{\pm}}$

Need detailed model of the amplitudes in the D meson Dalitz plot.

Our Use a control sample
 (CLEO-c data or D^{*+}→D⁰π⁺)
 to measure the Dalitz plot.

$$D^{*+} \to D^0 \pi^-$$

$$\downarrow^{} D^0 \to K^0_S h^+ h^-$$

y: GGSZ Method

- In the complete structure (amplitude and strong phases) of the D⁰ decay in the phase space is obtained on independent data sets and used as input to the analysis
- ◎ use of the cartesian coordinate:
 - $\mathbf{x}_{\pm} = \mathbf{r}_{\mathsf{B}} \cos (\delta \pm \gamma)$
 - $y_{\pm} = r_{\scriptscriptstyle B} \sin (\delta \pm \gamma)$
- [☉] γ , r_B and δ_B are obtained from a simultaneous fit of the K_Sπ⁺π⁻ Dalitz plot density for B⁺ and B⁻
- \odot need a model for the Dalitz amplitudes
- \odot 2-fold ambiguity on γ

Interference of $B^{-} \rightarrow D^{0}K^{-}, D^{0} \rightarrow K^{*+}\pi^{-}$ (suppressed) with $B^{-} \rightarrow \overline{D}{}^{0}K^{-}, \ \overline{D}{}^{0} \rightarrow K^{*+}\pi^{-}$ ~ ADS like m² (GeV²/c⁴) 50 BABA R 45 preliminary 40 2 1.5 1 0.5 0 ō $m_{1}^{2.5}$ (GeV²/c³)

> Interference of $B^{-} \rightarrow D^{0}K^{-}, D^{0} \rightarrow K^{0}{}_{s}\rho^{0}$ with $B^{-} \rightarrow \overline{D}^{0}K^{-}, \overline{D}^{0} \rightarrow K^{0}{}_{s}\rho^{0}$ ~ GLW like

CP violation: γ

 γ from B into DK decays: combined: $(73.4 \pm 4.4)^{\circ}$ UTfit prediction: $(65.8 \pm 2.2)^{\circ}$

back-up

-

CP violation in interference between mixing and decay:

examples		f	$\operatorname{Arg}(\frac{A}{A})$	λ	parameter
Champies	mixing	$B^0 ightarrow l u X, D^{(*)}\pi(ho,a_1)$	0	~ 0	ΔM_{B^0}
	"sin 2 eta "	$B^0 ightarrow J/\psi K^0,$	0	1	$\sin 2eta$
	"sin 2 $lpha$ "	$B^0 o \pi\pi, ho\pi, \pi\pi\pi$	\sim (-2γ)	~ 1	$\sin 2lpha$
	$\sin(2eta+\gamma)$ "	$B^0 o D^{(*)} \pi$	\sim $(-\gamma)$	~ 0.02	$\sin(2eta+\gamma)$

BB pair coherent production

The B⁰ and B⁰ mesons from the Y(4S) are in a coherent L = 1 state:
 The Y(4S) is a bb state with J^{PC} = 1⁻⁻.

• B mesons are scalars $(J^{P} = 0^{-})$

⇒ total angular momentum conservation

 \Rightarrow the BB pair has to be produced in a L = 1 state.

 \odot The Y(4S) decays strongly so B mesons are produced in the two flavour eigenstates B⁰ and $\overline{B}^{0:}$

After production, each B evolves in time, but in phase so that at any time there is always exactly one B⁰ and one B⁰ present, at least until one particle decays:
 ⇒ If at a given time t one B could oscillate independently from the other, they could become a state made up of two identical mesons: but the L = 1 state is anti-symmetric, while a system of two identical mesons (bosons!) must be completely symmetric for the two particle exchange.

 \odot Once one B decays the other continues to evolve, and so it is possible to have events with two B or two \overline{B} decays.

Measuring Δt

Asymmetric energies produce boosted Y(4S), decaying into coherent BB pair

Measuring Δt

Measuring Δt

 \Rightarrow Then fit the Δt distribution to obtain the amplitude of sine and cosine terms.

$B \rightarrow \rho \rho$

- (simplified) angular analysis
- Inputs from:

 θ_i are the helicity angles: angles between the π^0 momentum and the direction opposite to that of the B^0 in the vector rest frame.

 ϕ is the angle between the vector meson decay planes.

- We define the fraction of longitudinally polarised events as: $\frac{\Gamma_L}{\Gamma} = \frac{|H_0|^2}{|H_0|^2 + |H_{+1}|^2 + |H_{-1}|^2},$ $= f_L.$ $\frac{d^2\Gamma}{\Gamma d\cos\theta_1 d\cos\theta_2} = \frac{9}{4} \left[f_L \cos^2\theta_1 \cos^2\theta_2 + \frac{1}{4} (1 - f_L) \sin^2\theta_1 \sin^2\theta_2 \right]$
- fL ~ 1 for B $\rightarrow ~\rho\rho$ decays: this helps simplify extracting $\alpha.$
- Can measure S⁰⁰ as well as C⁰⁰ to help resolve ambiguities.
- Finite width of the ρ is ignored in the α determination

CP violation: $\boldsymbol{\alpha}$

\circledcirc Combining all the modes to maximize our knowledge of $\alpha..$

- \circledcirc Analyse a transformed Dalitz Plot to extract parameters related to $\alpha.$
- Output State St

◎ Fit the time-dependence of the amplitudes in the Dalitz plot:

$$\begin{aligned} |\mathcal{A}_{3\pi}^{\pm}(\Delta t)|^2 &= \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \bigg[|\mathcal{A}_{3\pi}|^2 + |\overline{\mathcal{A}}_{3\pi}|^2 \mp \left(|\mathcal{A}_{3\pi}|^2 - |\overline{\mathcal{A}}_{3\pi}|^2 \right) \cos(\Delta m_d \Delta t) \\ &\pm 2 \mathrm{Im} \left[\overline{\mathcal{A}}_{3\pi} \mathcal{A}_{3\pi}^* \right] \sin(\Delta m_d \Delta t) \bigg] \,, \end{aligned}$$