

Conceptual Design Report: arXiv:0709.0451 (hep-ex) http://web.infn.it/superb/index.php/home

Overview

- What is SuperB?
- Physics Case in the LHC era
- Accelerator Aspects
- Detector Design
- Current Status
- Summary

What is SuperB?

SuperB (In a Nutshell)

Site: Tor Vergata Campus (Rome II)

- Asymmetric energy e⁺e⁻ collider
- Low emittance operation (like LC)
- Polarised beams
- Luminosity 10³⁶ cm⁻²s⁻¹
 - 75ab-1 data at the Y(4S)
 - Collect data at other √s
 - Start data taking as early as 2015

Crab Waist technique developed to achieve these goals

International Community

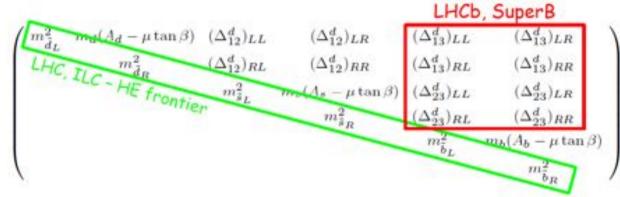
Geographical distribution of CDR signatories.

Precision B, D and τ decay studies and spectroscopy

- New Physics in loops
 - 10 TeV reach at 75ab-1
 - Rare decays
 - ∆S CP violation measurements
- Lepton Flavour & CP Violation in τ decay
- Light Higgs searches
- Dark Matter searches

http://web.infn.it/superb/index.php/home

- Aims to constrain flavour couplings of new physics at high energy:
 - Refine understanding of nature if new physics exists at high energy.
 - We need to test the anzatz that new physics might flavour blind:
 - Case 1: trivial solution → Reject more complicated models.
 - Case 2: non-trivial solution → Reject flavour blind models.


Quarks and neutrinos have non-trivial couplings. e,g, the CKM matrix in the Standard Model of particle physics. How far fetched is a trivial flavour blind new physics sector?

$$J^{\mu} = \left(\overline{u} \quad \overline{c} \quad \overline{t}\right) \frac{\gamma^{\mu} \left(1 - \gamma^{5}\right)}{2} \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s23 - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

- Aims to constrain flavour couplings of new physics at high energy:
 - Refine understanding of nature if new physics exists at high energy.
 - We need to test the anzatz that new physics might flavour blind:
 - Case 1: trivial solution → Reject more complicated models.
 - Case 2: non-trivial solution → Reject flavour blind models.

e.g. MSSM: 124 (160 with v_R) couplings, most are flavour related.

M²a ≈

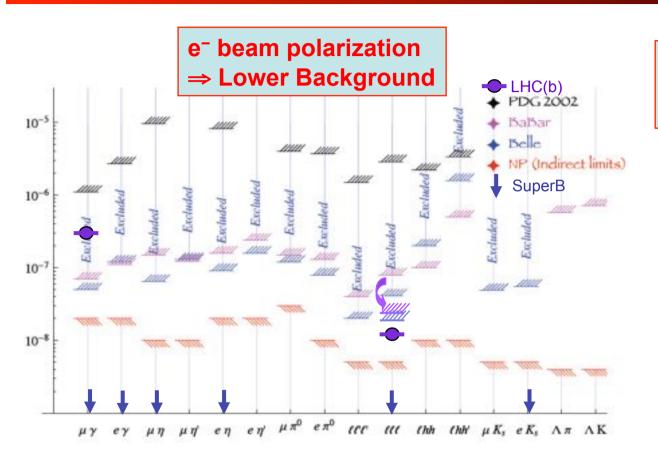
Δ's are related to NP mass scale.

and similarly for M2

Adrian Bevan

- Aims to constrain flavour couplings of new physics at high energy:
 - Refine understanding of nature if new physics exists at high energy.
 - We need to test the anzatz that new physics might flavour blind:
 - Case 1: trivial solution → Reject more complicated models.
 - Case 2: non-trivial solution → Reject flavour blind models.
 - If the LHC doesn't find new physics: SuperB indirectly places constraints beyond the reach of the LHC and SLHC.

- The measurements to be made at SuperB fall into two categories:
 - New physics sensitive goals of the experiment
 - Some of these physics processes will be discussed in a moment: B, D, τ, Y,
 - This is why we want to build SuperB!
 - Standard Model calibrations (I won't talk about this)
 - This is how we validate our understanding of the detector: repeating measurements done by BaBar/ Belle and LHCb.
 - The equivalent of doing W, Z and PDF physics at ATLAS/CMS.

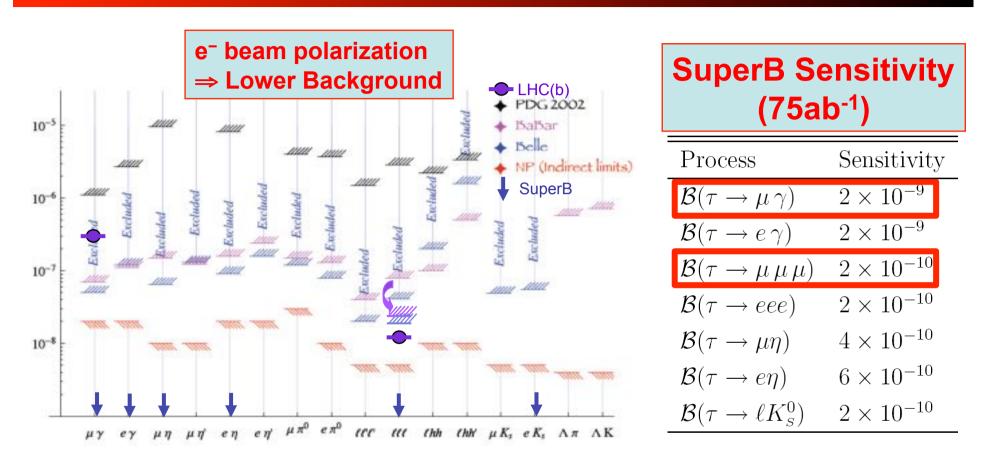

Case studies:

- 1. Lepton Flavour Violation: T decay as an example of many LFV measurements possible at SuperB.
- 2. Charged Higgs: what do we know; what will LHC tell us; what does SuperB add?
- 3. Neutral Higgs A0: what can the flavour sector add to high p_⊤ searches?
- **4. ΔS measurements**: high mass particle interferometry.

Physics Case in the LHC era

Why is SuperB experiment relevant when we have the energy frontier experiments and LHCb?

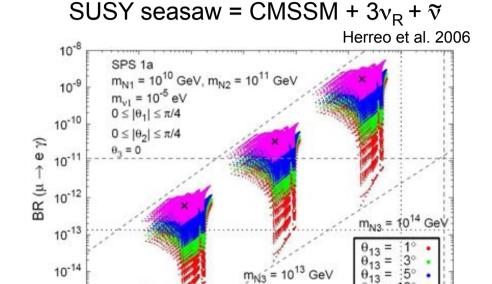
What is the minimum data set to make sure that we are doing something sensible?



SuperB Sensitivity (75ab⁻¹)

Process	Sensitivity
$\mathcal{B}(\tau \to \mu \gamma)$	2×10^{-9}
$\mathcal{B}(\tau \to e \gamma)$	2×10^{-9}
$\mathcal{B}(au o \mu \mu \mu)$	2×10^{-10}
$\mathcal{B}(\tau \to eee)$	2×10^{-10}
$\mathcal{B}(\tau \to \mu \eta)$	4×10^{-10}
$\mathcal{B}(\tau \to e \eta)$	6×10^{-10}
$\mathcal{B}(au o \ell K_{\scriptscriptstyle S}^0)$	2×10^{-10}

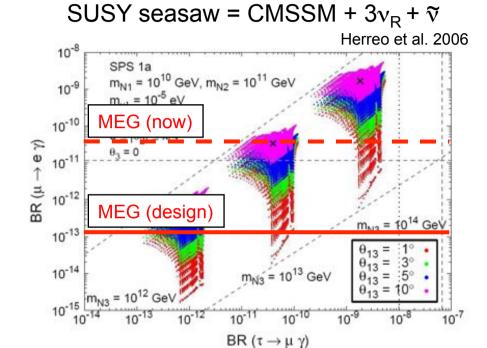
- LHC is not competitive (Re: both GPDs and LHCb).
- SuperB sensitivity ~10 50× better than NP allowed branching fractions.


May 2009 Adrian Bevan 10

- LHC is not competitive (Re: both GPDs and LHCb).
- SuperB sensitivity ~10 50× better than NP allowed branching fractions.

May 2009

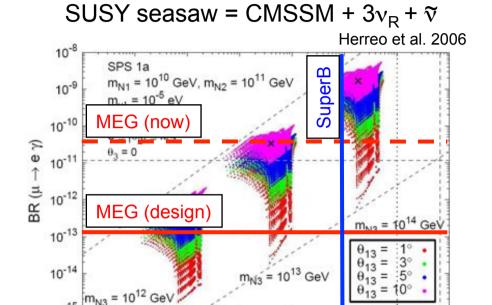
- τ→μγ upper limit can be correlated to θ₁₃ (neutrino mixing/CPV, T2K etc.) and also to μ→eγ.
- Complementary to flavour mixing in quarks.
- Golden modes:
 - $-\tau \rightarrow \mu \gamma$ and 3μ .
- e⁻ beam polarization:
 - Lower background
 - Better sensitivity than competition!
- e⁺ polarization may be used later in programme.
- CPV in τ→K_Sπν at the level of ~10⁻⁵.
- Bonus:
 - Can also measure τ g-2 (polarization is crucial).
 - $\sigma(g-2) \sim 2.4 \times 10^{-6}$ (statistically dominated error).



Process	Expected $90\%CL$	4σ Discovery
	upper limited	Reach
$\mathcal{B}(\tau \to \mu \gamma)$	2×10^{-9}	5×10^{-9}
$\mathcal{B}(\tau \to \mu \mu \mu)$	2×10^{-10}	8.8×10^{-10}

BR $(\tau \rightarrow \mu \gamma)$

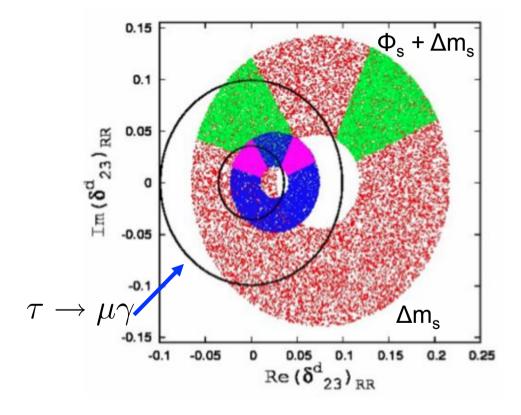
Use $\mu \gamma/3I$ to distinguish SUSY vs. LHT.


- τ→μγ upper limit can be correlated to θ₁₃ (neutrino mixing/CPV, T2K etc.) and also to μ→eγ.
- Complementary to flavour mixing in quarks.
- Golden modes:
 - $-\tau \rightarrow \mu \gamma$ and 3μ .
- e⁻ beam polarization:
 - Lower background
 - Better sensitivity than competition!
- e⁺ polarization may be used later in programme.
- CPV in τ→K_Sπν at the level of ~10⁻⁵.
- Bonus:
 - Can also measure τ g-2 (polarization is crucial).
 - $\sigma(g-2) \sim 2.4 \times 10^{-6}$ (statistically dominated error).

Process	Expected 90%CL	4σ Discovery
	upper limited	Reach
$\mathcal{B}(\tau \to \mu \gamma)$	2×10^{-9}	5×10^{-9}
$\mathcal{B}(\tau \to \mu \mu \mu)$	2×10^{-10}	8.8×10^{-10}

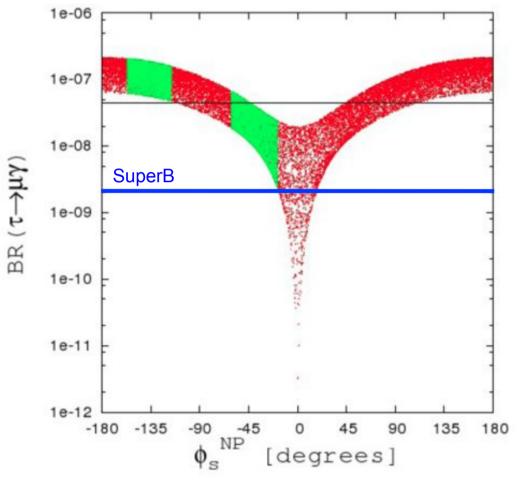
Use $\mu \gamma/3I$ to distinguish SUSY vs. LHT.

- τ→μγ upper limit can be correlated to θ₁₃ (neutrino mixing/CPV, T2K etc.) and also to μ→eγ.
- Complementary to flavour mixing in quarks.
- Golden modes:
 - $-\tau \rightarrow \mu \gamma$ and 3μ .
- e⁻ beam polarization:
 - Lower background
 - Better sensitivity than competition!
- e⁺ polarization may be used later in programme.
- CPV in τ→K_Sπν at the level of ~10⁻⁵.
- Bonus:
 - Can also measure τ g-2 (polarization is crucial).
 - $\sigma(g-2) \sim 2.4 \times 10^{-6}$ (statistically dominated error).

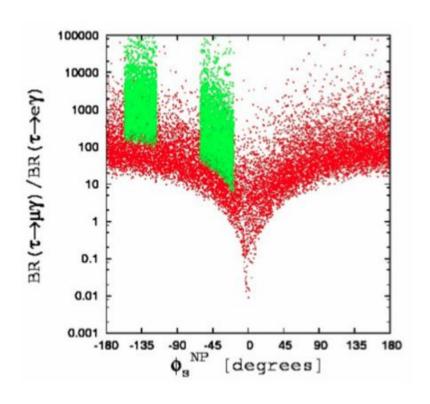

Process	Expected 90%CL	4σ Discovery
	upper limited	Reach
$\mathcal{B}(\tau \to \mu \gamma)$	2×10^{-9}	5×10^{-9}
$\mathcal{B}(\tau \to \mu \mu \mu)$	2×10^{-10}	8.8×10^{-10}

BR $(\tau \rightarrow \mu \gamma)$

10-10

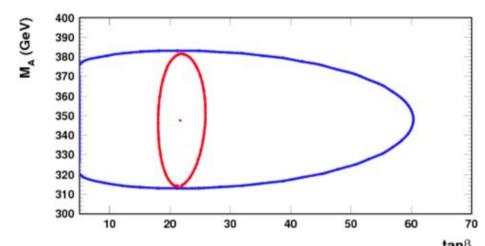

Use $\mu \gamma/3I$ to distinguish SUSY vs. LHT.

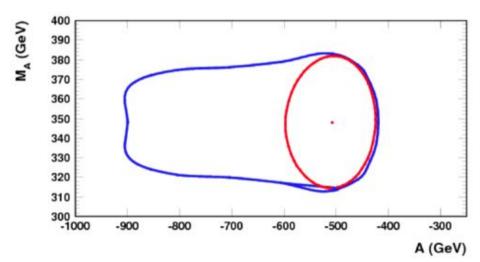
$$m_{\tilde{q}} = 300\,GeV$$
 BLUE $m_{\tilde{q}} = 500\,GeV$ RED


- SU(5) SUSY GUT Model (arXiv :0710.5443, Parry and Zhang).
- Model has non-trivial SUSY squark couplings.
- Current BS mixing measurement favours B(τ→μγ)>3×10-9.
- Need SuperB to probe to this sensitivity.

N.B. Different New Physics Models have different features, and different hierarchies!

- SU(5) SUSY GUT Model (arXiv :0710.5443, Parry and Zhang).
- Model has non-trivial SUSY squark couplings
- Current BS mixing measurement favours B(τ→μγ)>3×10-9.
- Need SuperB to probe to this sensitivity.


N.B. Different New Physics Models have different features, and different hierarchies!



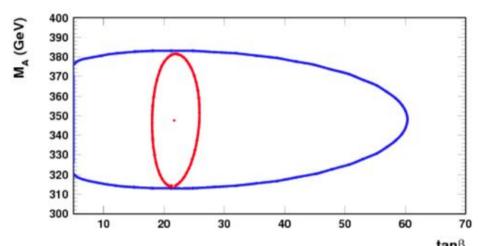
- SU(5) SUSY GUT Model (arXiv :0710.5443, Parry and Zhang).
- Model has non-trivial SUSY squark couplings
- Current BS mixing measurement favours B(τ→μγ)>3×10-9.
- Need SuperB to probe to this sensitivity.

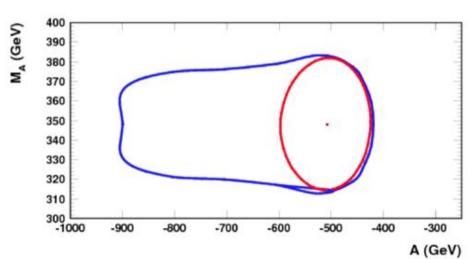
N.B. Different New Physics Models have different features, and different hierarchies!

CMSSM: LHC/SuperB complementarity

Current analysis of data prefers $\tan \beta \sim 10$.

March 2008


Blue = LHC:


- Will be able to measure m(A) [CP odd Higgs mass]
- Poor sensitivity to tanβ [ratio of Higgs vevs]
- Poor sensitivity to A [coupling]

Red=LHC+EW/Low-energy constraints (includes SuperB):

Observable	Constraint	theo. error
$R_{ extbf{BR}_{b ightarrow s\gamma}}$	1.127 ± 0.1	0.1
$R_{\Delta M_s}$	0.8 ± 0.2	0.1
$\mathrm{BR}_{b o \mu\mu}$	$(3.5 \pm 0.35) \times 10^{-8}$	2×10^{-9}
$R_{{ m BR}_{b o au u}}$	0.8 ± 0.2	0.1
Δa_{μ}	$(27.6 \pm 8.4) \times 10^{-10}$	2.0×10^{-10}
$M_W^{ m SUSY}$	$80.392 \pm 0.020{\rm GeV}$	0.020 GeV
$\sin^2 heta_W^{ m SUSY}$	0.23153 ± 0.00016	0.00016
$M_h^{ ext{light}}(ext{SUSY})$	> 114.4 GeV	$3.0\mathrm{GeV}$

CMSSM: LHC/SuperB complementarity

Current analysis of data prefers $\tan \beta \sim 10$.

Blue = LHC:

- Will be able to measure m(A) [CP odd Higgs mass]
- Poor sensitivity to tanβ [ratio of Higgs vevs]
- Poor sensitivity to A [coupling]

Red=LHC+EW/Low-energy constraints (includes SuperB):

• Can build on the m(A) measurement to measure tanβ.

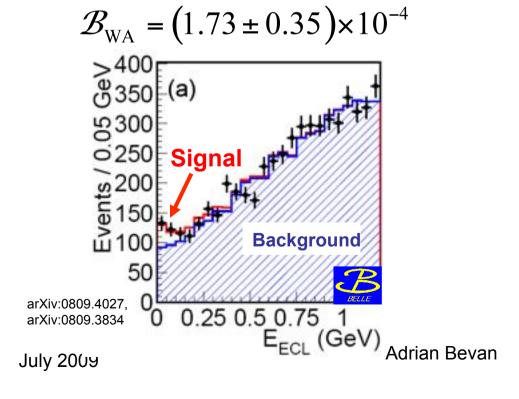
Again LHC and SuperB are complementary experiments. Each can contribute significantly to the knowledge of new physics.

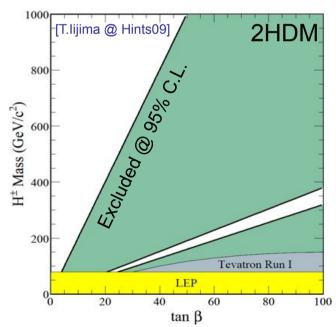
March 2008

Charged Higgs: $B^{\pm} \rightarrow \tau^{\pm} \nu$

 B^{-}

• Within the SM, sensitive to f_B and $|V_{ub}|$: $\mathcal{B}_{SM} \sim 1.6 \times 10^{-4}$.




MFV models like 2HDM / MSSM.

Unparticles.

$$\mathcal{B}_{SM}(B^{+} \to l^{+}v_{l}) = \frac{G_{F}^{2}m_{B}m_{l}^{2}}{8\pi} \left(1 - \frac{m_{l}^{2}}{m_{B}^{2}}\right) f_{B}^{2} |V_{ub}|^{2} \tau_{B}$$

• Fully reconstruct the event (modulo v).

2HDM: W.-S Hou PRD **48** 2342 (1993) MSSM: G. Isidori arXiv:0710.5377 Unparticles: R. Zwicky PRD**77** 036004 (2008)

Charged Higgs

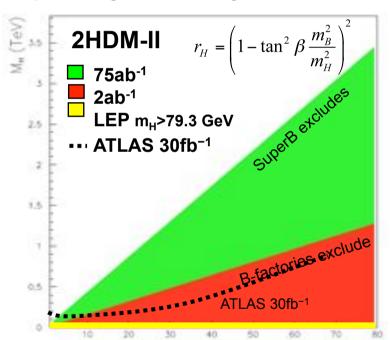
B-factory searches competitive with LHC era: e.g. 2HDM

Existing Constraints from BaBar and Belle. Combined Higgs search constraint from ATLAS: arXiv:0901.1502 $B \to \tau \nu \quad B \to D \tau \nu \quad K \to \mu \nu$ $B \rightarrow X_s \gamma$ 500 Converted constraints expected from ATLAS onto the plot by hand. 95% C.L. exclusion sensitivity 400 CDF Run II Excluded $M_{H^{\pm}}$ [GeV] 95% CL 50 40 35 200 tanß 25 20 100 30 fb⁻¹ 15 10 fb⁻¹ 10 1 fb⁻¹ ATLAS Scenario B 50 30 10 20 40 60 70 110 130 150 170 200 250 400 600 m_H [GeV] $tan\beta$ U. Haisch 0805.2141

Adrian Bevan

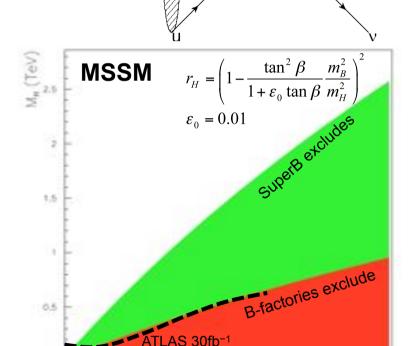
21

March 2008


tang

Charged Higgs

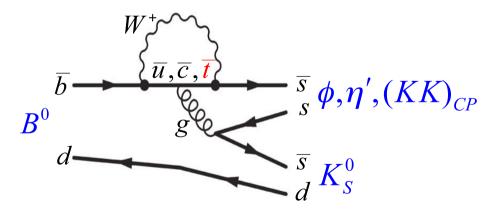
Higgs mediated MFV:


$$r_{H} = \frac{\mathcal{B}_{SM+NP}}{\mathcal{B}_{SM}}$$

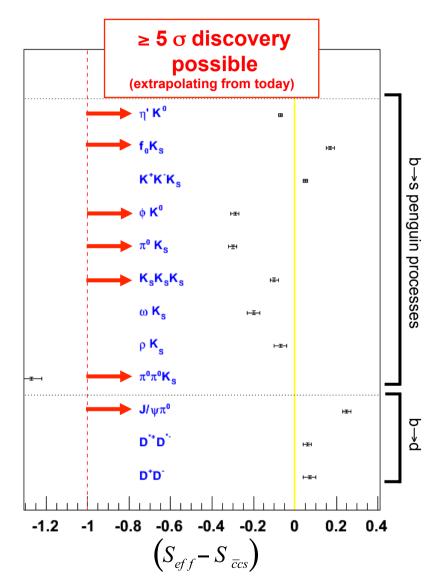
(Assuming SM branching fraction is measured)

B-factories have 1.5ab⁻¹ of data. ATLAS sensitivity sketched from combined sensitivity plots in arXiv:0901.0512. b

 (H^{+}, W^{+})


- Multi TeV search capability for large tanβ.
- Includes SM uncertainty ~20% from V_{ub} and f_B.

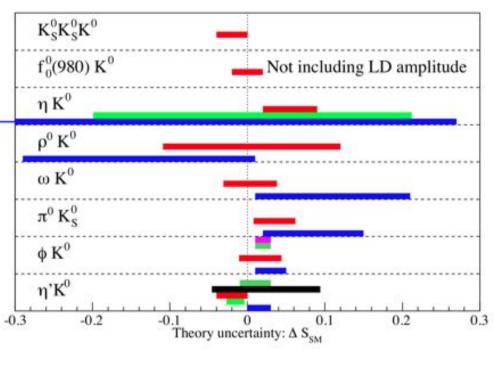
∆S measurements


- β=(21.1±0.9)° from Charmonium decays.
- Look in many different b→s and b→d decays for sin2β deviations from the SM:

$$\Delta S_{\rm NP} = S_{eff} - S_{c\overline{c}s} - \Delta S_{\rm SM}$$

The golden channel is:

 Deviations would be from high mass particles in loops: H, χ, ...


∆S measurements

 The SM uncertainty is strongly mode dependent.

 Golden modes have to be well measured and theoretically clean.

 Prefer to also have robust constraints from more than one theoretical approach.

 Precision measurements of the reference Charmonium decay also have a small SM uncertainty.

QCDF, Beneke et al., PLB620 143 (2005)

SCET/QCDF Williamson and Zupan PRD 74 014003 (2006)

QCDF Cheng, Chua, Soni PRD72, 014006 (2005); PRD 74 094001 (2005)

SU(3) Gronau, Rosner, Zupan PRD74 093003 (2006)

QCDF Buchalla, Hiller, Nir, Raz, JHEP 09, 074 (2005)

Li and Mishima PRD74, 094020 (2006)

∆S measurements

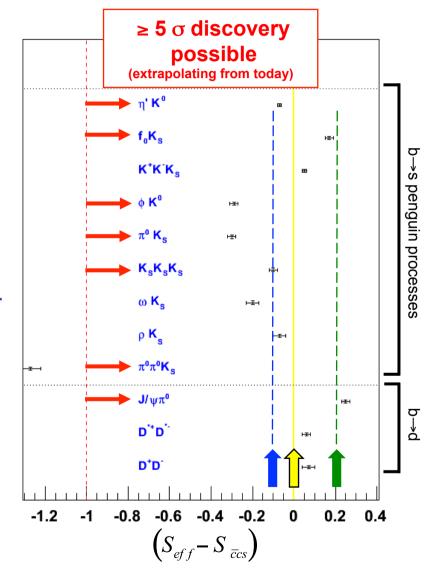
- We were reminded that we should be careful with what we compare:
 - NP could affect cc̄s sin2β.
- 1) Predict $\sin 2\beta$ from indirect constraints.

$$\left[\sin(2\beta)\right]_{\text{no }V_{ub}}^{\text{prediction}} = 0.87 \pm 0.09$$
 .

2) Compare to ccs measurement.

$$[\sin 2\beta]_{c\bar{c}s} = 0.672 \pm 0.023$$

3) Compare to clean penguin measurements.


$$[\sin 2\beta]_{b \to s-penguin}^{clean} = 0.58 \pm 0.06$$

(or the average of the two)

Are these 2.1-2.7 σ hints for new physics?

Lunghi and Soni, Phys.Lett.B**666** 162-165 (2008). Buras and Guadagnoli Phys Rev D **78** 033005 (2008).

Can theory error be reduced for other modes?

Standard Model measurements.

B Physics at Y(4S) Rare Charm Decays:

B Factories (2 ab^{-1})	Super B (75 al	
0.018	0.005 (†)	
0.30	0.05	
0.10	0.02	
0.20	0.04	
0.10	0.02	
0.20	0.03	
0.13	0.02(*)	
0.05	0.01(+)	
	0.02 (+)	
	0.02 (+)	
	0.03(+)	
0.12	0.02(*)	
$\sim 15^\circ$	2.5°	
es) $\sim 12^{\circ}$	2.00	
s) ~ 9°	1.5°	
$\sim 6^{\circ}$	1-2°	
$\sim 16^{\circ}$	3°	
$\sim 7^{\circ}$	1-2° (*)	
$\sim 12^{\circ}$	2°	
$\sim 6^{\circ}$	$1-2^{\circ}$ (*)	
20°	5°	
4% (+)	1.0% (*)	
1% (*)	0.5% (*)	
	3.0% (*)	
	2.0% (*)	
07((+)	2.000 (*)	
20%	4% (†)	
visible	5%	
10%	2%	
1000	Same State	
	3% (†)	
30%	5%	
0007 (†)	0.004 († *)	
~ 0.20	0.05	
0.012 (†)	0.004 (†)	
0.03	0.006 (†)	
0.15	0.02 (+)	
	0.10	
AUSOLUTE:	0.10	
7%	1%	
25%	9%	
	5%	
35%	19.70	
35% visible	20%	
	0.018 0.30 0.10 0.20 0.10 0.20 0.13 0.05 0.15 0.15 0.17 0.12 ~ 15° ~ 6° ~ 16° ~ 7° ~ 12° ~ 6° ~ 12° ~ 8% (*) 15% (*) 20% 4% (*) 15% 30% 0.007 (†) 0.03 0.15 possible 7%	

1 month at $\psi(3770)$

Channel	Sensitivity
$D^0 \to e^+ e^-, \ D^0 \to \mu^+ \mu^-$	1×10^{-8}
$D^0 \to \pi^0 e^+ e^-, D^0 \to \pi^0 \mu^+ \mu^-$	2×10^{-8}
$D^0 \to \eta e^+ e^-, D^0 \to \eta \mu^+ \mu^-$	3×10^{-8}
$D^0 \to K_s^0 e^+ e^-, D^0 \to K_s^0 \mu^+ \mu^-$	3×10^{-8}
$D^+ \to \pi^+ e^+ e^-, \ D^+ \to \pi^+ \mu^+ \mu^-$	1×10^{-8}
$D^0 \to e^{\pm} \mu^{\mp}$	1×10^{-8}
$D^+ \to \pi^+ e^{\pm} \mu^{\mp}$	1×10^{-8}
$D^0 \to \pi^0 e^{\pm} \mu^{\mp}$	2×10^{-8}
$D^0 \to \eta e^{\pm} \mu^{\mp}$	3×10^{-8}
$D^0 \to K_S^0 e^{\pm} \mu^{\mp}$	3×10^{-8}
$D^+ \to \pi^- e^+ e^+, D^+ \to K^- e^+ e^+$	1×10^{-8}
$D^+ \to \pi^- \mu^+ \mu^+, D^+ \to K^- \mu^+ \mu^+$	1×10^{-8}
$D^+ \to \pi^- e^{\pm} \mu^{\mp}, D^+ \to K^- e^{\pm} \mu^{\mp}$	1×10^{-8}

Mode Observable $\Upsilon(4S)$ $\psi(3770)$ Charm Mixing (75 ab^{-1}) (300 fb^{-1}) $D^0 \rightarrow K^+\pi^ 3 \times 10^{-5}$ 7×10^{-4} $D^0 \rightarrow K^+K^ 5 \times 10^{-4}$ $D^0 \rightarrow K_S^0 \pi^+ \pi^ 4.9 \times 10^{-4}$ 3.5×10^{-4} 3×10^{-2} $\psi(3770) \rightarrow D^0 \overline{D}^0$ $(1-2) \times 10^{-5}$ $(1-2) \times 10^{-3}$ $\cos \delta$ (0.01 - 0.02)

See CDR and Valencia report for details of the SM measurements and other possible NP searches.

τ: LFV / CPV / ...

Process	Sensitivity	
$B(\tau \rightarrow \mu \gamma)$	2×10^{-9}	
$B(\tau \rightarrow e \gamma)$	2×10^{-9}	
$B(\tau \rightarrow \mu \mu \mu)$	2×10^{-10}	
$B(\tau \rightarrow eee)$	2×10^{-10}	
$B(\tau \rightarrow \mu \eta)$	4×10^{-10}	
$B(\tau \rightarrow e \eta)$	6×10^{-10}	
$B(\tau \rightarrow \ell K_s^0)$	2×10^{-10}	

Adrian Bevan

B Physics at Y(5S)

Observable	Error with $1 \mathrm{ab}^{-1}$	Error with 30 ab ⁻¹
ΔΓ	$0.16 \ \mathrm{ps^{-1}}$	$0.03~{\rm ps}^{-1}$
Γ	$0.07~{\rm ps}^{-1}$	$0.01~{\rm ps^{-1}}$
β_s from angular analysis	20°	8°
$A^s_{ m SL}$	0.006	0.004
A_{CH}	0.004	0.004
$\mathcal{B}(B_s \to \mu^+ \mu^-)$	-	$<8\times10^{-9}$
$ V_{td}/V_{ts} $	0.08	0.017
$\mathcal{B}(B_s \to \gamma \gamma)$	38%	7%
β_s from $J/\psi\phi$	10°	3°
$\beta_s \text{ from } B_s \to K^0 \bar{K}^0$	24°	11°

Golden Matrix

No one smoking gun... rather a 'golden matrix'.

	H^+ high $\tan \beta$		Non-MFV	NP Z-penguins	Right-handed currents	LTH	SUSY
$\mathcal{B}(B \to X_s \gamma)$		L	M		M		
$A_{CP}(B \rightarrow X_s \gamma)$			L		M		
$\mathcal{B}(B \to \tau \nu)$	L-CKM						
$\mathcal{B}(B \to X_s \ell \ell)$	ALL SACRETORIES		M	M	M		
$\mathcal{B}(B \to K \nu \overline{\nu})$			M	L			
$S_{K_S\pi^0\gamma}$					L		
The angle β (ΔS)			L-CKM		L		
$\tau \rightarrow \mu \gamma$							L
$\tau \rightarrow \mu \mu \mu$						L	

... + other generic models

L = Large effect.

M = Measureable effect.

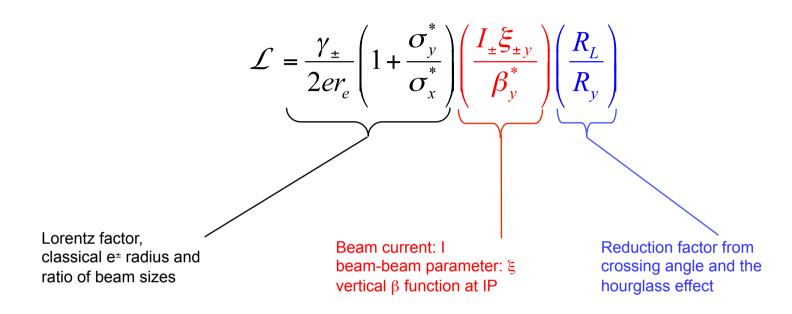
CKM= Precision CKM (from SuperB) required.

... + charm + spectroscopy (DM /Light Higgs etc).

 Need to measure all observables in order to select/eliminate new physics scenarios!

Mode	Sensitivity			
	Current	$10~{\rm ab^{-1}}$	$75 {\rm ab}^{-1}$	
$\mathcal{B}(B \to X_s \gamma)$	7%	5%	3%	
$A_{CP}(B o X_s \gamma)$	0.037	0.01	0.004 - 0.005	
$\mathcal{B}(B^+ \to \tau^+ \nu)$	30%	10%	3-4%	
$\mathcal{B}(B^+ \to \mu^+ \nu)$	\mathbf{X}	20%	5 - 6%	
$\mathcal{B}(B \to X_s l^+ l^-)$	23%	15%	4-6%	
$A_{\rm FB}(B \to X_s l^+ l^-)_{s_0}$	X	30%	4-6%	
$\mathcal{B}(B \to K \nu \overline{\nu})$	\mathbf{X}	X	16-20%	
$S(K_S^0\pi^0\gamma)$	0.24	0.08	0.02 – 0.03	

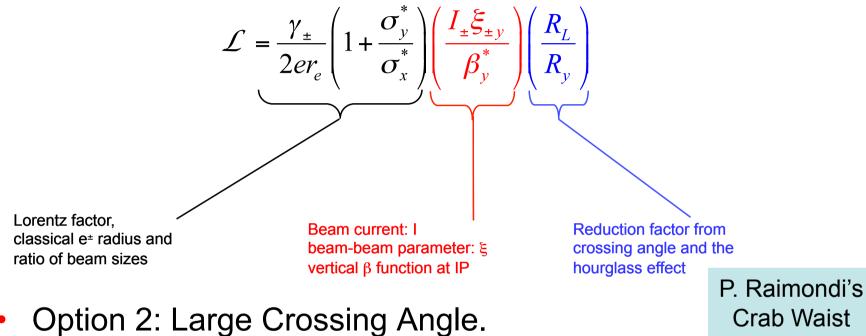
- The golden modes
 - will be measured by SuperB.
 - `smoking guns' for their models.
- Measurements not yet made are denoted by X.
- •With 75ab-1 we can
 - Reach above a TeV with B→ τν
 - See B→K√√


Accelerator Aspects

How can we obtain a data sample of 75ab⁻¹?

Target Integrated Luminosity

- Why at least 75ab⁻¹ of data?
 - Many of these new physics searches become systematically or theoretically limited.
 - e.g. time dependent asymmetry measurements with b→s penguin decays).
 - This data sample represents almost two orders of magnitude larger sample than current experiments.
 - The current B-factories have over 1ab-1 (combined) on disk/tape.
 - Will record a total of ~1.5ab⁻¹.
 - Ensures that if new physics is found (e.g. in LFV) that one can start to perform rudimentary measurements of such phenomena.
 - 10ab⁻¹ of data is sufficient to start to constrain models of LFV in τ decays.
 - Need more than this to ensure discovery.
 - Will be able to start measuring parameters in V_{SCKM} (if SUSY exists), or constrain Multi TeV energy level NP in your favourite scenario.
 - Strong constraints on NP that complement the LHC direct searches!
 - Will be able to test for light Higgs/dark matter particles and lepton universality by running at the Y(3S) resonance [hundreds of fb⁻¹ from a few months running].

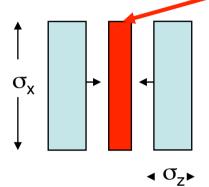

How to get increased \mathcal{L}

- Option 1: Brute Force.
 - Increase beam current.
 - Decrease β^*_y .
 - Increase beam-beam effect ξ (reduce bunch length).

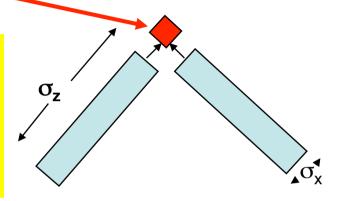
(Hard – but possible – to do all of this efficiently)

How to get increased \mathcal{L}

- Have a 15mrad crossing angle of beams.
- Focus beams at IP (small β^*).
- Retain longer bunch lengths.
- Rotate colliding bunches so no geometric loss at IP.
 - Align the focussed parts of bunches that cross each other at the IP. Call this "Crab Crossing/Waist".


concept.

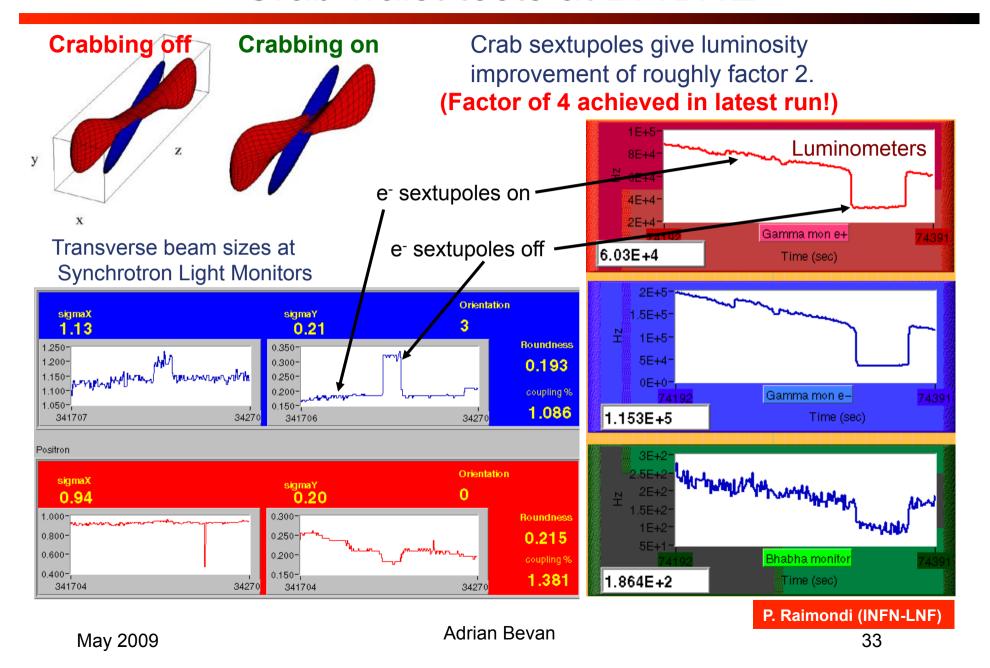
Large crossing angle, small x-size



Overlap region

2) Large crossing angle, long bunches

(1) and (2) have sameLuminosity, but (2) haslonger bunches andsmaller σ_x

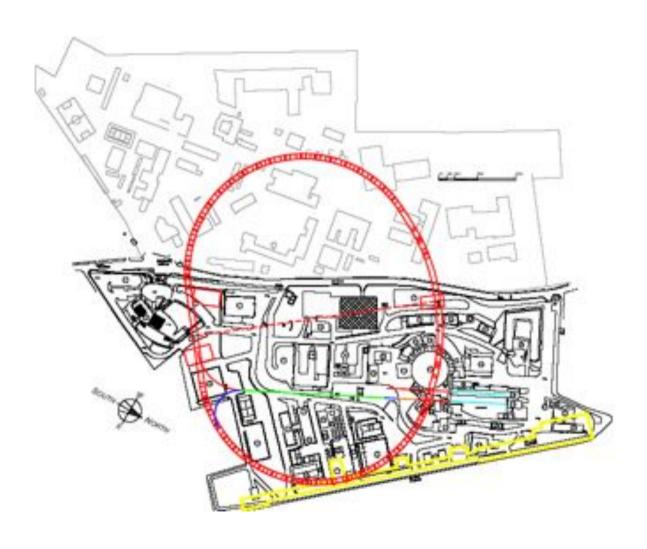

With large crossing angle the x and z planes are swapped

Large Piwinski angle:

$$\Phi = tg(\theta)\sigma_z/\sigma_x$$

y waist can be moved along z with a sextupole on both sides of IP at proper phase "Crab Waist"

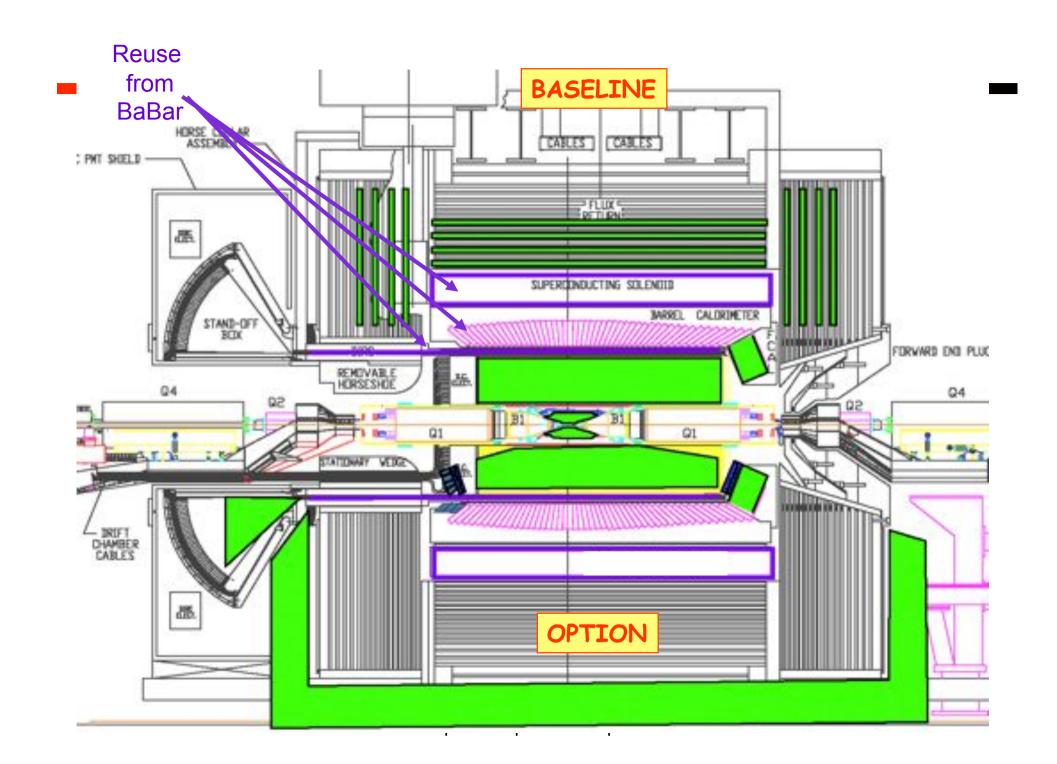
Crab waist tests at DAΦNE



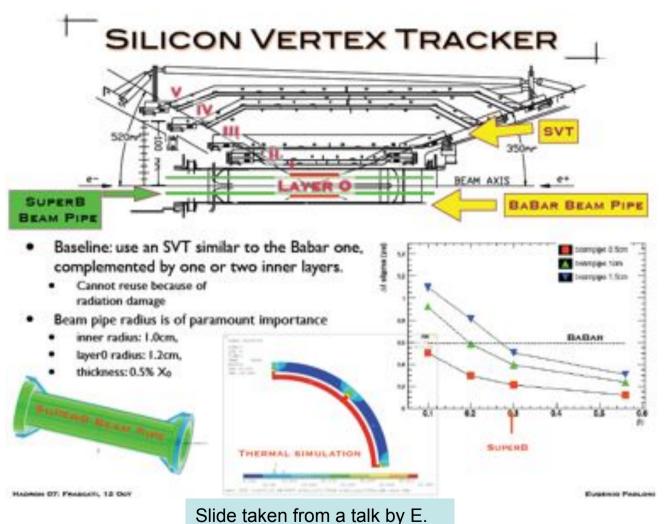
LER/HER	Unit	June 2008	Jan. 2009	March 2009	LNF site
E+/E-	GeV	4/7	417	4/7	417
L	cm2 s1	1x10 ⁻	1x10 ³⁰	1x10H	1x10 ¹⁶
1:/1-	Amp	1.85 /1.85	2.00/2.00	2.80/2.80	2.70/2.70
None	x10 ¹⁰	5.55 /5.55	6/6	4.37/4.37	4.53/4.53
N _{bun}		1250	1250	2400	1740
Sunch	mA	1.48	1.6	1.17	1.6
6/2	mrad	25	30	30	30
β,*	mm	35/20	35/20	35/20	35/20
β,"	mm	0.22 /0.39	0.21 /0.37	0.21 /0.37	0.21 /0.37
e,	nm	2.8/1.6	2.8/1.6	2.8/1.6	2.8/1.6
e,	pm	7/4	714	714	7/4
σ	μm	9.9/5.7	9.9/5.7	9.9/5.7	9.9/5.7
a,	nm	39/39	38/38	38/38	38/38
σ,	m.m.	5/5	5.15	5/5	5/5
٤	X tune shift	0.007/0.002	0.005/0.0017	0.004/0.0013	0.004/0.0013
د	Y tune shift	0.14 /0.14	0.125/0.126	0.091/0.092	0.094/0.095
RF stations	LERMER	5/6	5/6	5/8	6/9
RF wall plug power	MW	16.2	18	25.5	30.
Circumference	m	1800	1800	1800	1400

SITES: Tor Vergata......

LNF option


"Mini-MAC now feels secure in enthusiastically encouraging the SuperB design team to proceed to the TDR phase, with confidence that the design parameters are achievable"

Machine is possible!

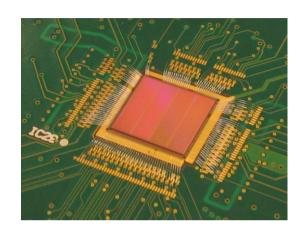

The 2 rings can be built largely with the components of PEPII:

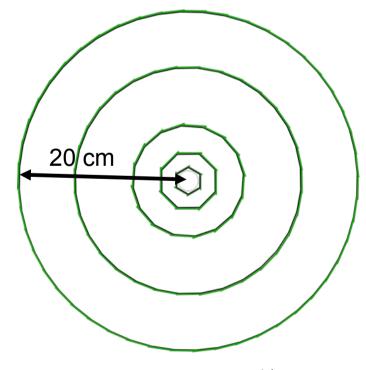
Magnets and RF stations.

Detector Design

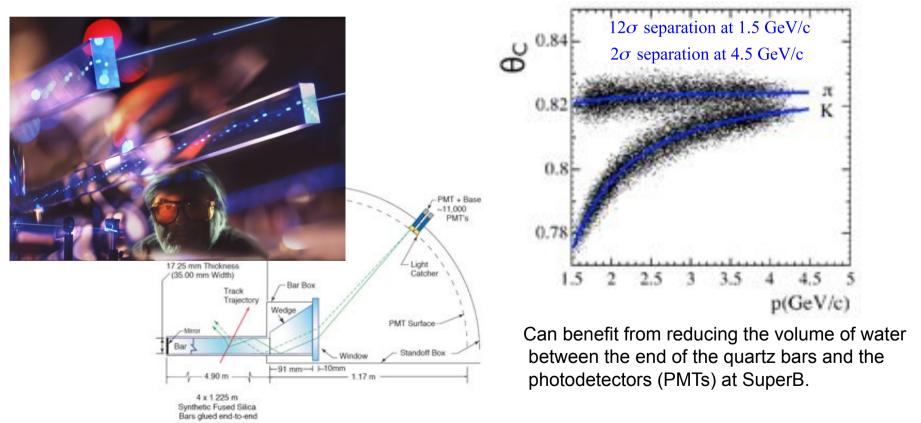
Tracking

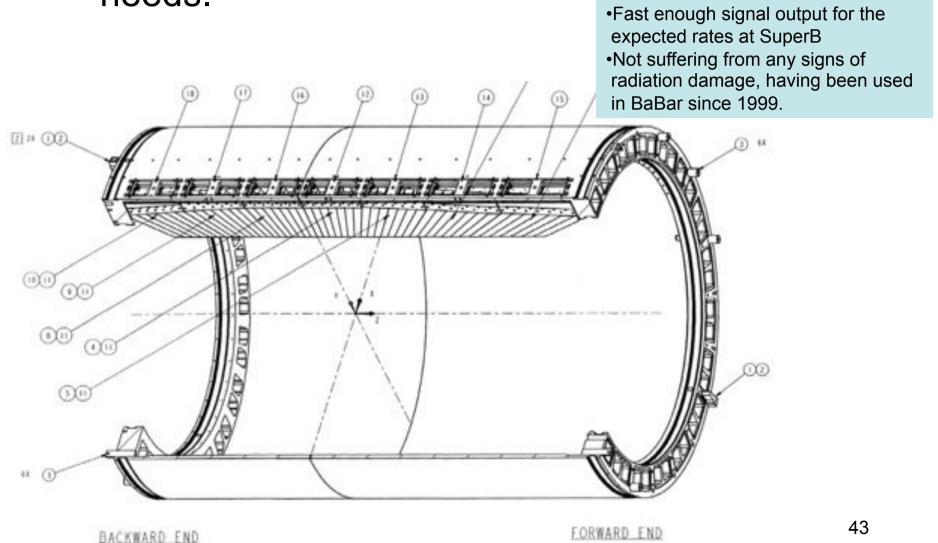
Paoloni @ Hadron 07


BaBar DCH Design

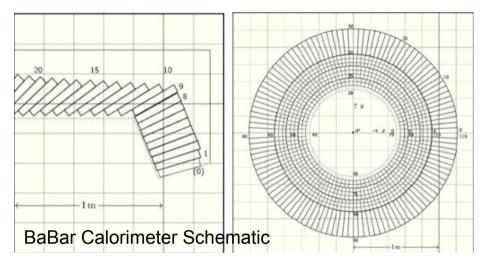

- Adequate performance.
- Needs to be replaced as the existing detector is aging.

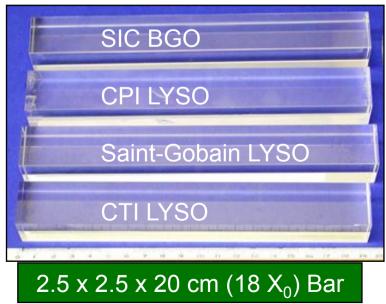
All Pixel SVT Concept


- Use INMAPS chips for a 5 layer all pixel vertex detector.
 - Adapt well understood leading STFC funded design to use with SuperB.
 - Common infrastructure for sub -system.
 - Physics studies required to understand performance (in progress) as part of detector optimisation.
 - UK has world leading expertise in this area.
 - Building on expertise and developments from SPiDeR and CALICE, LCFI ...
 - Concept well received by SuperB.


Particle ID

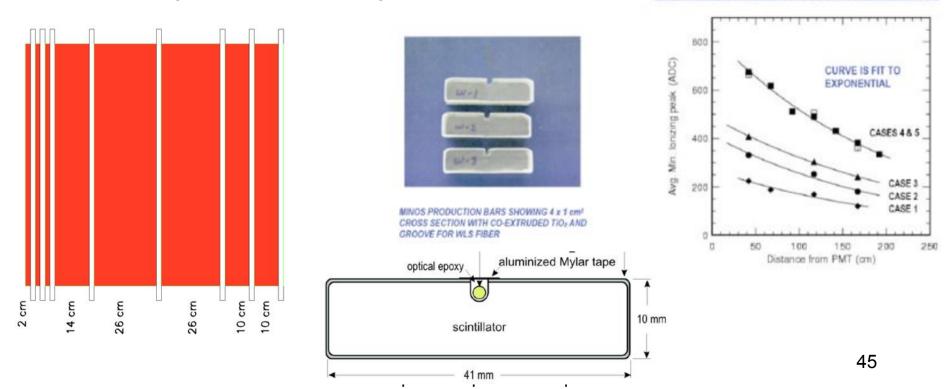
- Detector of Internally Reflected Cherenkov light (DIRC) works extremely well.
- Aim to reuse this principle with state of the art readout.


Calorimeter Barrel


Calorimeter Barrel is more than sufficient for our needs.

Calorimeter End-Cap

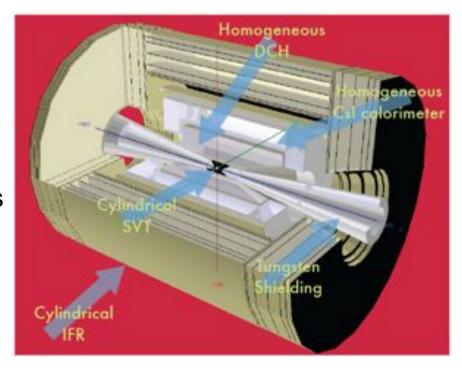
- BaBar End-Cap doesn't have a fine enough granularity for rates at SuperB.
 - Need a finer segmentation.
 - Similar total X₀.
 - Faster readout electronics.
 - Several candidate materials for End-Cap replacement.
 - LYSO is baseline
 - expensive at the moment (~ \$40/cc).
 - Aim for \$15/cc.
 - Need to integrate into the existing Barrel, and optimise segmentation.
 - R&D underway toward a LYSO Calorimeter test-beam in ~2009.



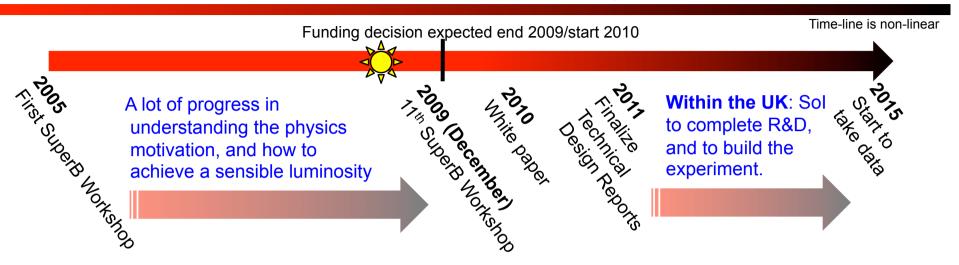
Instrumented Flux Return

- BaBar has 5 radiation lengths of material for μ identification in the flux return.
 - This is not optimal.
 - SuperB will have more iron.
- The segmentation of active regions of the flux return will remain the same as BaBar (3.7cm pitch).

ATTENUATION LENGTH MEASUREMENTS FOR 5 CASES


7-8 layers of MINOS style scintillator bars.

Detector Simulation


Simulation:

- FastSim (validated on using geometry for BaBar)
 - Reproduces BaBar resolutions etc.
 - Change to SuperB geometry and boost for development of benchmark studies.
 - Then move to GEANT 4 for more detailed work.
- GEANT 4 model of SuperB shown.
- Using BaBar framework.
- Draw on a decade of analysis experience from BaBar and Belle to optimize an already good design.

Current status

Timeline of the project

Prior to 2005, there was no clear way to achieve an interesting data sample on an interesting timescale (\mathcal{L} < 10³⁶ cm⁻²s⁻¹).

Then there was a revelation: The crabbed waist and inspiration from the ILC.

Working toward a coherent description of what we want to build and why:
White paper end of 2009
Technical Design Reports end of 2010.

Expect a funding decision from host country by the end of this year.

5 years of nominal data taking will give 75ab⁻¹ of data.

Global situation

Global community is working on the SuperB TDR effort:
 Accelerator, Detector, Physics.
 Global community working

Global community working toward the realization of a Super Flavour Factory.

- R&D funding from:
 - Italy
 - France
 - Canada

- Two Concepts: SuperB (this seminar) and Belle-II.
- Other R&D efforts at various levels from:
 - Israel, Poland, Norway, Russia, Spain, UK, Ukraine, US.
- Other countries are watching the development of the process.
- Please contact me if you want more information or want to join the effort: a.j.bevan@qmul.ac.uk.

What about Belle-II?

Similar concept:

- Adiabatic upgrades from KEKB through to a ~0.8×10³⁶ machine.
 - Funding situation was equivalent to SuperB.
 - Timeline is start data taking in 2013 (low luminosity).
 - Incremental upgrades to reach the ultimate lumi.
 - Target data sample: 50ab⁻¹.
- Some differences between SuperB and Belle-II by ~2020:

Experiment:	SuperB	Belle-II
I _{LER}	4 GeV	tbd
I _{HER}	7 GeV	tbd
ε _x	2.8 / 1.6 nm	tbd
\mathcal{E}_{y}	7 / 4 pm	tbd
Ĺ	75ab ⁻¹	50ab ⁻¹
e⁻ Polarisation	80%	none
run at ψ(3770)	yes	no

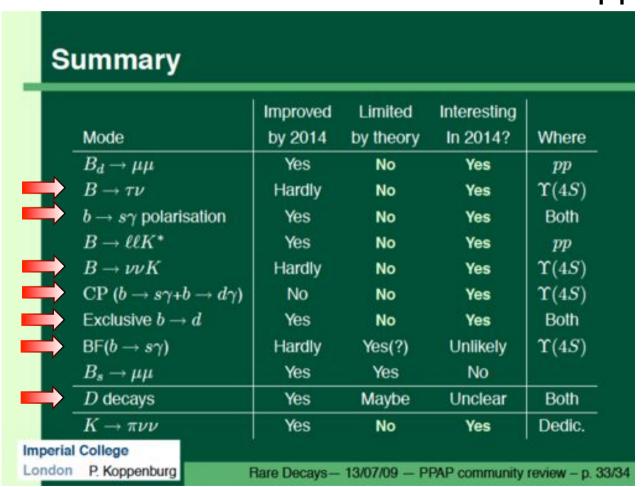
N.B. Some parameters for the experiments may change. The Belle-II accelerator concept is in the process of being re-worked from a high current to a low emmitance (Italian) one, so the total cost of both projects will be the about the same.

What about Belle-II?

- Similar concept:
 - Adiabatic upgrades from KEKB through to a ~0.8×10³⁶ machine.
 - Funding situation was equivalent to SuperB.
 - Timeline is start data taking in 2013 (low luminosity).
 - Incremental upgrades to reach the ultimate lumi.
 - Target data sample: 50ab⁻¹.
 - Some differences between SuperB and Belle-II by ~2020:

Experiment:	SuperB	Belle-II
$oldsymbol{I}_{LER} \ oldsymbol{I}_{HER} \ oldsymbol{arepsilon}_{x}$	4 GeV 7 GeV 2.8 / 1.6 nm	Polarisation increases potential of τ physics studies.
$\stackrel{\hat{\epsilon_{y}}}{\mathcal{L}}$	7 / 4 pm 75ab ⁻¹	ψ(3770) increases charm/CPV /Mixing study potential.
e ⁻ Polarisation run at ψ(3770)	80% yes	none no

N.B. Some parameters for the experiments may change. The Belle-II accelerator concept is in the process of being re-worked from a high current to a low emmitance (Italian) one, so the total cost of both projects will be the about the same.


Hindsight always gives us 20:20 vision.

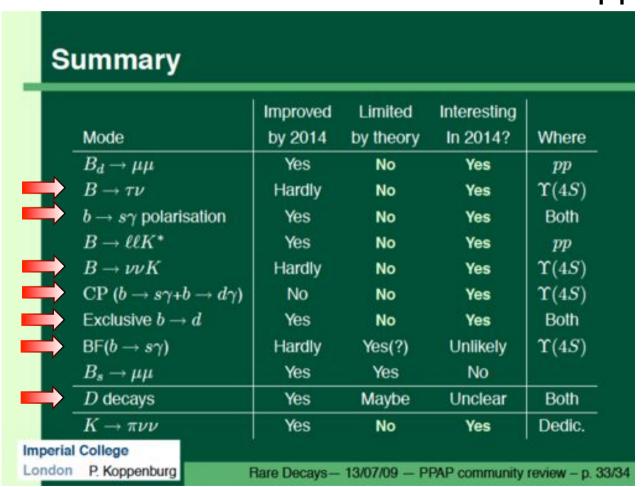
Until we have understood new physics, we are left trying to piece together the jigsaw puzzle of a high energy world where the possibilities are limited only by (a theorists) imagination.

- Want to elucidate new physics in as many ways as possible. Currently we
 - don't know the fine detail of NP.
 - don't know the relevant NP energy scale (yet).
 - The LHC may, or may not elucidate this issue.
 - don't know if the NP flavour sector is trivial or complicated:
 - Prior experience suggests it will be complicated.
 - But we do know that there are many models: 2HDM (type-n), MSSM, NMSSM, ...
 - Many <u>assume</u> flavour couplings are zero.

- The LHC won't be able to solve the SUSY flavour problem.
 - LHCb may help in a few specific channels: e.g. K*II,
 B_S decays.
 - The GPDs may help with some ultra-rare B decays.
 - Some NP sensitive observables are accessible through studies at dedicated flavour experiments.
 - A large number of observables are only measureable competitively at a Super Flavour Factory.
 - Need this to unravel the nature of new physics.

 A subset of interesting light meson flavour-physics circa 2015: Predictions from Koppenberg: '09.

Caveats I:


Focuses on what can be done now.

SuperB would open the doors to many new interesting modes.

Most interesting measurements are possible at SuperB.

Read in conjunction with the next slide.

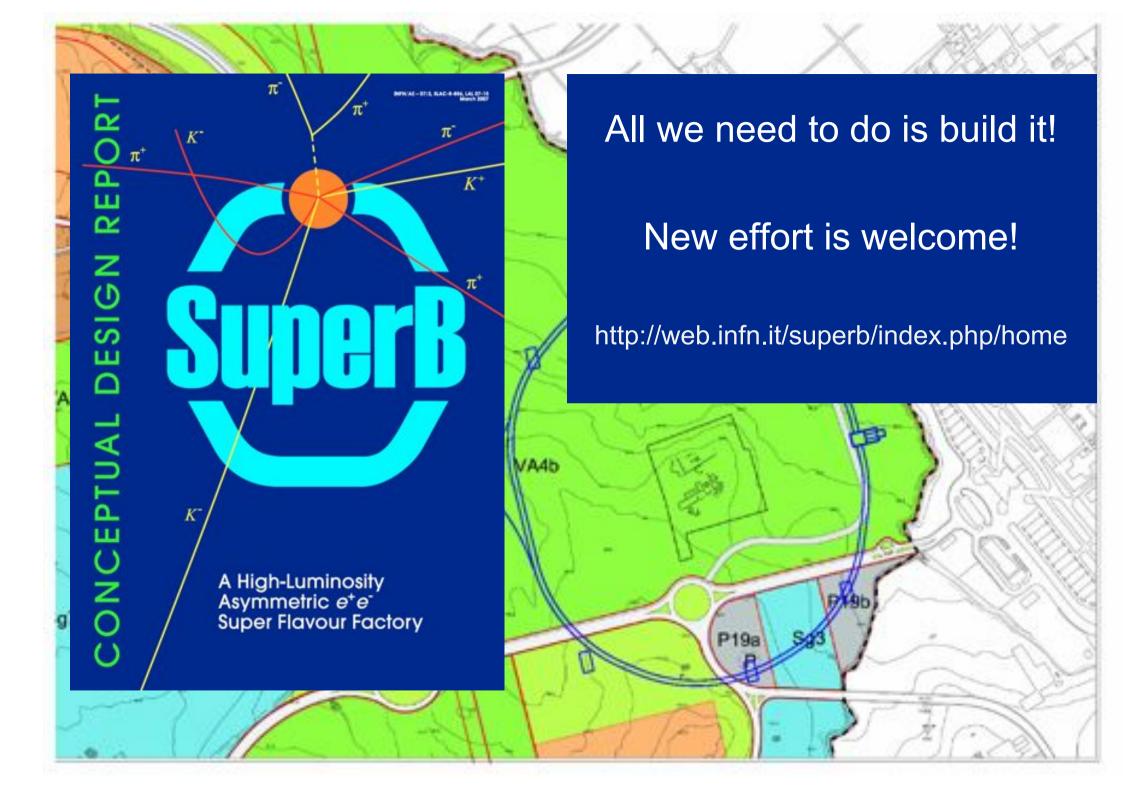
 A subset of interesting light meson flavour-physics circa 2015: Predictions from Koppenberg: '09.

Caveats II:

Inclusive measurements are theoretically clean: so they are more interesting to make.

You need a clean environment (e+e-) to do inclusive measurements: i.e. SuperB

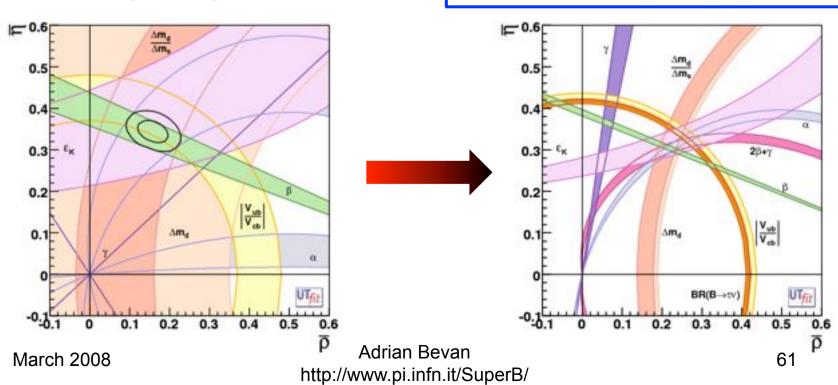
Quantum correlations at the $\psi(3770)$ open up an equivalent set of measurements at charm threshold.

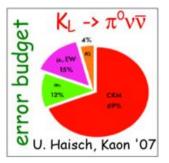

- The rest of the golden matrix includes:
 - more τ Lepton Flavour Violation studies.
 - Y decay studies:
 - Light Higgs
 - Dark Matter

	H^+ high $\tan \beta$	MFV	Non-MFV	NP Z-penguins	Right-handed currents	LTH S	USY
$\mathcal{B}(B \to X_s \gamma)$		L	M		M		
$A_{CP}(B \rightarrow X_s \gamma)$			L		M		
$\mathcal{B}(B \to \tau \nu)$	L-CKM						
$\mathcal{B}(B \to X_s \ell \ell)$			M	M	M		
$\mathcal{B}(B \to K \nu \overline{\nu})$			M	L			
$S_{K_S\pi^0\gamma}$					L		
The angle β (ΔS)			L-CKM		L		
$\tau \rightarrow \mu \gamma$							L
$\tau \rightarrow \mu \mu \mu$						L	

Lepton number conservation

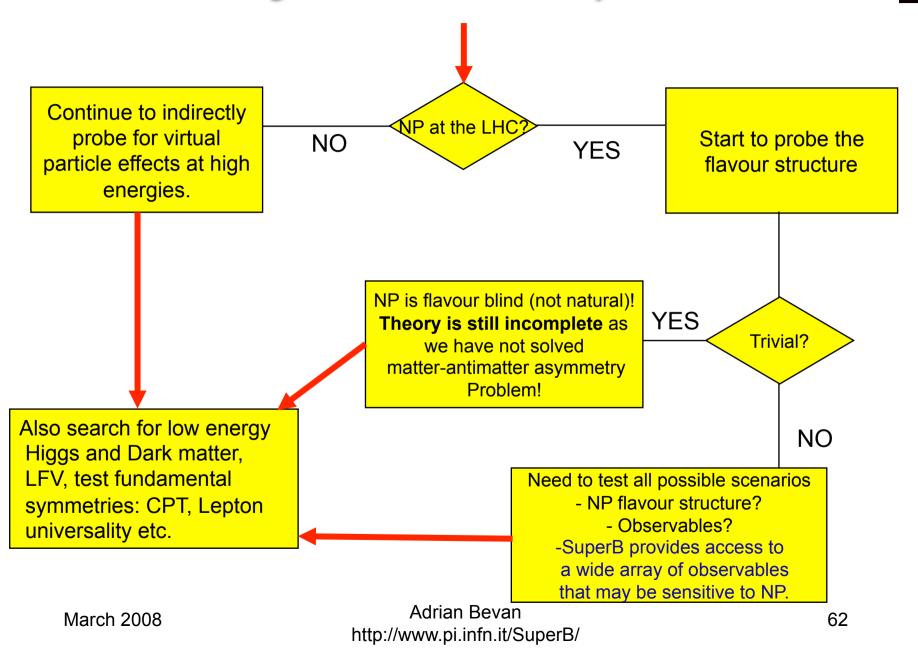
- Probe Dark Sector: 'Dark Forces'
 - Learn about simple, and complex models of Dark Matter through meson decays.
 - http://www-conf.slac.stanford.edu/darkforces2009/


- Many questions will remain after the anticipated discoveries from the LHC.
 - What is the nature of flavour couplings beyond the Standard Model?
 - What can this tell us about any (un-)observed new particles?
 - Are there additional contributions that help resolve the Matter-antimatter asymmetry fine tuning problem?
 - Charged Lepton Flavour Violation: is it SM ~10⁻⁵⁴, or significantly enhanced?
 - Is there a charged Higgs?
 - What is the structure of Dark Matter?
- SuperB can shed some light in all these areas.


Extra Material

Precision CKM

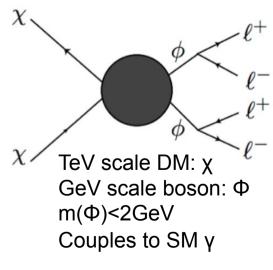
- CKM is a 36 year old anzatz.
- Works at the 10% level.
- No underlying physical insight.
- Small new physics contributions not ruled out (% level).

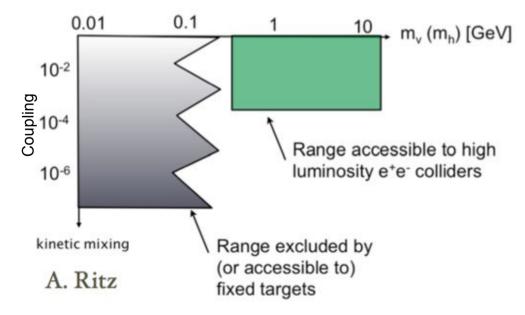


Precision CKM from SuperB will open up more new physics search opportunities: e.g. K→πνν:

K+ decay has a similar error budget.

Particle Physics Landscape circa 2015



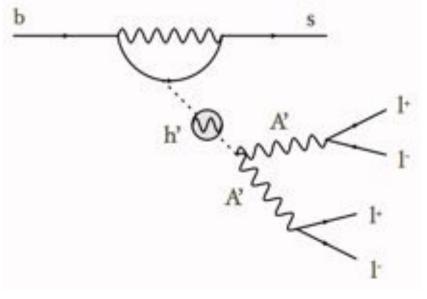

Dark Forces

See the recent workshop http://www-conf.slac.stanford.edu/darkforces2009/ Summarised by Mat Graham at the October 2009 SLAC SuperB meeting

Arkani-Hamed, Finkbeinder, Slatyer, Weinder hep-ph/0810.0713 Pospelov, Ritz hep-ph/0810.1502

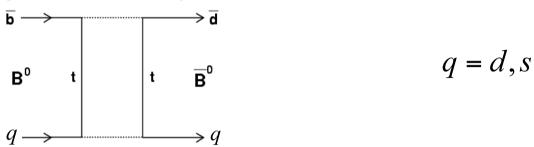
Adrian Bevan http://www.pi.infn.it/SuperB/

March 2008


Dark Forces

See the recent workshop http://www-conf.slac.stanford.edu/darkforces2009/ Summarised by Mat Graham at the October 2009 SLAC SuperB meeting

In addition to the vector 'portal' with the kinetic coupling, there should be a Higgs coupling term:


•B→K*4l is an interesting channel to search for this.

Adrian Bevan http://www.pi.infn.it/SuperB/

New Physics in $\Delta F=2$ Transitions

• Δ F=2 transitions in $B_{d,s}^0 \overline{B}_{d,s}^0$ systems are box diagrams (mixing or FCNC).

 New physics (NP) can contribute with an amplitude ratio C_q and phase φ_q.

$$C_{q}e^{i\phi_{q}} = \frac{\left\langle B_{q}^{0} \mid H_{SM+NP} \mid \overline{B}_{q}^{0} \right\rangle}{\left\langle B_{q}^{0} \mid H_{SM} \mid \overline{B}_{q}^{0} \right\rangle}$$

• $C_q=1$, and $\phi_q=0$ for the Standard Model (SM).

New Physics in ∆F=2 Transitions

- Existing measurements already constrain NP in B_d mixing (See later for B_S).
- SuperB will significantly improve this constraint.

Minimal Flavour Violation

- Suppose that there are no new physics flavour couplings (MFV).
 - CP violation comes from the known SM Yukawa couplings.
 - The top quark contribution dominates the SM.
 - NP contribution in $\Delta B=2$ transitions is:

$$\delta S_0 = 4a \bigg(\frac{\Lambda_0}{\Lambda}\bigg)^2$$
 Real Wilson coefficient $O(1)$ New Physics Scale

- MFV Includes many NP scenarios i.e. 1HDM/2HDM, MSSM, ADD, RS.
- What is the energy scale that we are sensitive to?

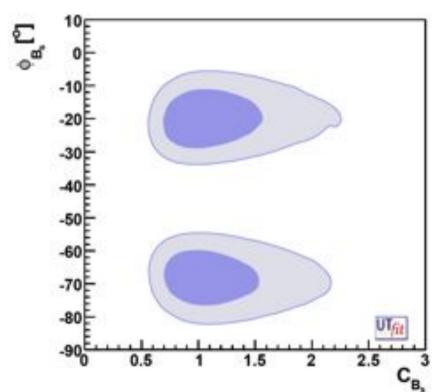
Minimal Flavour Violation

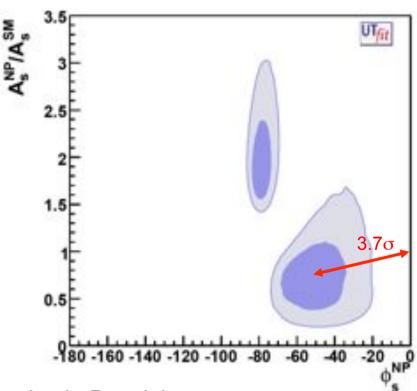
- Sensitive to new physics contributions with Λ up to 14 TeV (= $6\Lambda_0$).
- For loop mediated NP contributions the constraint can be weakened so that $\Lambda \sim 700 \text{GeV}$.
- Don't require that the EWSB scale match Λ .

Aside: MFV & B_S?

- Recent preprint from UT Fit claims evidence for new physics in B_S decays.
 - Test for NP via:

$$C_{s}e^{i\phi_{s}} = \frac{\left\langle B_{s}^{0} \mid H_{SM+NP} \mid \overline{B}_{s}^{0} \right\rangle}{\left\langle B_{s}^{0} \mid H_{SM} \mid \overline{B}_{s}^{0} \right\rangle}$$

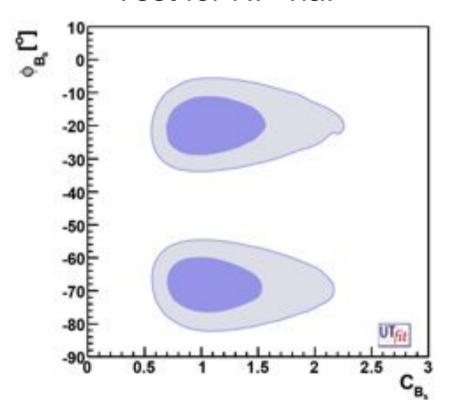

– Using B_S mixing, A_{SL}, lifetime and tagged J/ψφ results ($\Delta \Gamma$ vs β_S) from CDF and D0.


$$\beta_S = 0.018 \pm 0.001 \text{ (SM)}$$

$$= \arg\left(\frac{-V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}\right)$$

Aside: MFV & B_S?

- Recent preprint from UT Fit claims evidence for new physics in B_S decays.
 - Test for NP via:

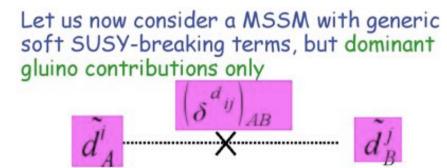


 3.7σ evidence for new physics in B_S mixing.

Disfavours MFV hypothesis!

Aside: MFV & B_S?

- Recent preprint from UT Fit claims evidence for new physics in B_S decays.
 - Test for NP via:

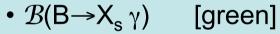

Observable	68% Prob.	95% Prob.
$\phi_{B_s}[^{\circ}]$	-19.9 ± 5.6	[-30.45,-9.29]
	-68.2 ± 4.9	[-78.45,-58.2]
C_{B_s}	1.07 ± 0.29	[0.62, 1.93]
$\phi_s^{ m NP}[^{\circ}]$	-51 ± 11	[-69,-27]
	-79 ± 3	[-84,-71]
$A_s^{ m NP}/A_s^{ m SM}$	0.73 ± 0.35	[0.24, 1.38]
	1.87 ± 0.06	[1.50, 2.47]
$\operatorname{Im} A_s^{\operatorname{NP}}/A_s^{\operatorname{SM}}$	-0.74 ± 0.26	[-1.54,-0.30]
Re $A_s^{\rm NP}/A_s^{\rm SM}$	-0.13 ± 0.31	[-0.61, 0.78]
	-1.82 ± 0.28	[-2.68, -1.36]
$A_{\rm SL}^s \times 10^2$	-0.34 ± 0.21	[-0.75,0.03]
$A_{\rm SL}^{\mu\mu} \times 10^3$	-2.1 ± 1.0	[-4.7, -0.3]
$\Delta\Gamma_s/\Gamma_s$	0.105 ± 0.049	[0.02, 0.20]
	-0.098 ± 0.044	[-0.19, -0.02]

$$\beta_S = 0.0409 \pm 0.0038$$

Eagerly awaiting a final result from CDF and D0: AND results from LHCb!

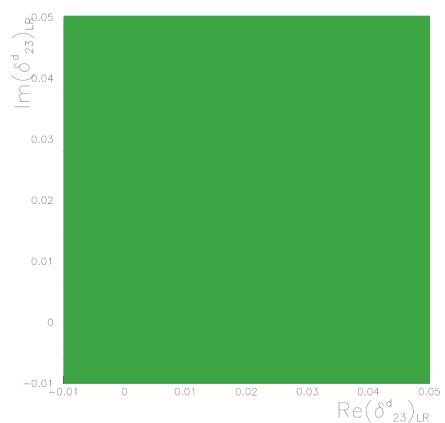
SUSY CKM

- The SM encodes quark mixing in the CKM matrix, v mixing with the MSW matrix so
- SUSY encodes squark mixing in a Super CKM equivalent of the CKM matrix: V_{SCKM}.



- Have couplings for LL, LR, RL, RR interactions.
- LHC probes the High Energy Frontier.
 - Measures the diagonal elements of V_{SCKM}.
- SuperB probes the Luminosity Frontier.
 - Measures the off-diagonal elements V_{SCKM}.

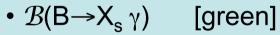
SUSY CKM


• Couplings are $\left(\delta_{ij}^{q}\right)_{AR}$ L. Silvestrini (SuperB IV) where A,B=L,R, and i,j are squark generations.

 e.g. Constrain parameters in V_{SCKM} using:

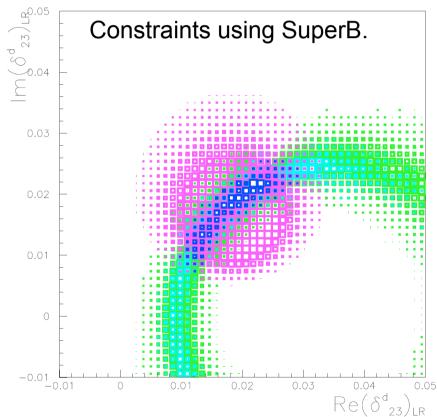
- $\mathcal{B}(B \rightarrow X_s l^+ l^-)$ [cyan]
- $A_{CP}(B \rightarrow X_s \gamma)$ [magenta]
- Combined [blue]

SuperB probes new physics in SUSY larger than 20TeV (and up to 300TeV in some scenarios)



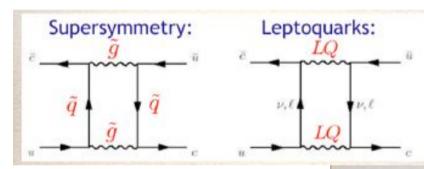
With current data, the whole range shown is allowed!

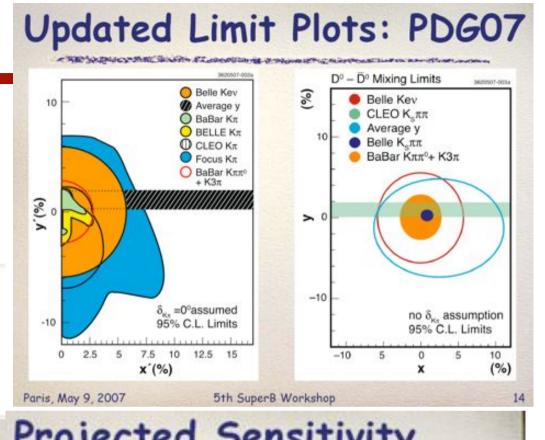
SUSY CKM


• Couplings are $\left(\delta_{ij}^{q}\right)_{AR}$ L. Silvestrini (SuperB IV) where A,B=L,R, and i,j are squark generations.

e.g. Constrain parameters in V_{SCKM} using:

- $\mathcal{B}(B \rightarrow X_s l^+ l^-)$ [cyan]
- $A_{CP}(B \rightarrow X_s \gamma)$ [magenta]
- Combined [blue]


SuperB probes new physics in SUSY larger than 20TeV (and up to 300TeV in some scenarios)



With current data, the whole range shown is allowed!

D⁰ mixing

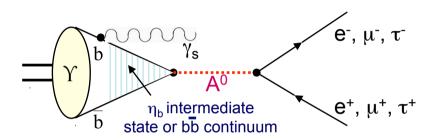
- Recent measurements from BaBar and Belle demonstrated B factory capabilities in charm physics
- Possibility to measure CP violation in the charm sector

Extended Higgs:

Exp't / 1 o	y _{CP} (10-3)	y' (10-3)	x'2 (10-4)	cosò
B-factories (2ab-1)	2-3	2-3	1-2	-
SuperB (50 ab-1)	0.5	0.7	0.3	-
LHCb (10 fb-1) Only B->D*	?	0.7	0.7	-
LHCb (100 fb-1) Prompt D*	?	?	?	-
CLEO-c (750 pb-1)	10		2-3	0.1-0.2
BESIII (20 fb-1)	4		0.5-1	0.05
Super8 - 4 GeV (0.2 ab-1)	1-2		<0.2	<0.05

TILLP.// VV VV VV.PI.II III I.IU OUPOI D/

March 2008


Searching for a Light Higgs or Dark Matter Candidates

LEP data do not exclude the possibility!

For more details see the talks of McElrath and Sanchis at the SuperB retreat in Valencia Jan '08: http://ific.uv.es/superb/

Searching for a Light Higgs

- Many NP scenarios have a possible light Higgs Boson (e.g. 2HDM).
- Can use Y(nS)→I⁺I⁻ to search for this.
 - Contribution from A⁰ would break lepton universality

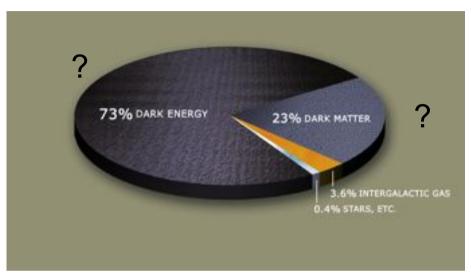
M. A. Sanchis-Lozano, hep-ph/0510374, Int. J. Mod. Phys. A19 (2004) 2183

Can expect hundreds of fb⁻¹ recorded at the Y(3S) in SuperB

NMMSM Model with 7 Higgs Bosons

Physical Higgs bosons: (seven)

2 neutral CP-odd Higgs bosons (A_{1,2}) 3 neutral CP-even Higgs bosons (H_{1,2,3}) 2 charged Higgs bosons (H[±])

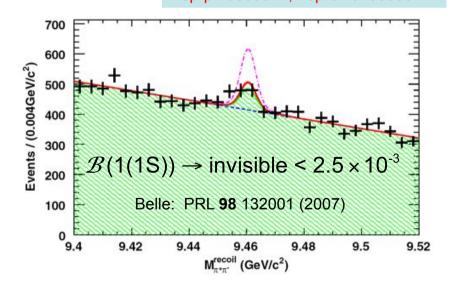

A₁ could be a light DM candidate.

Possible NMMSM Scenario

 $A_1 \sim 10 \text{ GeV}$ $H_1 \sim 100 \text{ GeV (SM-like)}$ Others ~300 GeV (almost degenerate)

Gunion, Hooper, McElrath [hep-ph:0509024] McElrath [hep-ph/0506151], [arXiv:0712.0016]

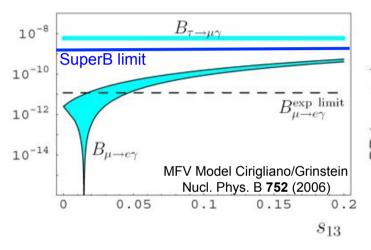
Searching for Dark Matter



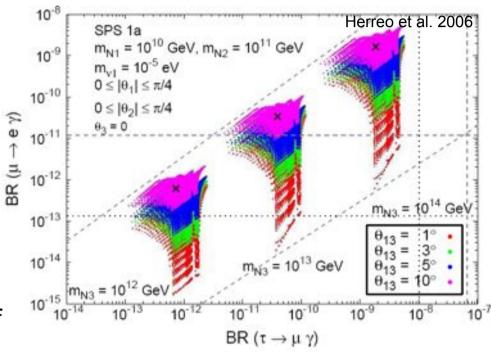
 Possible to search for the effect of DM at the B-factories for most modes:

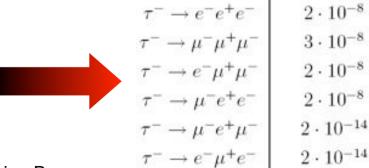
$$\begin{array}{ccc} \Upsilon \rightarrow invisible & J/\Psi \rightarrow invisible \\ \eta \rightarrow invisible & \Upsilon \rightarrow \gamma + invisible \\ B^+ \rightarrow K^+ + invisible & \Upsilon \rightarrow \gamma A_1, A_1 \rightarrow \tau^+ \tau^- \\ K^+ \rightarrow \pi^+ + invisible & J/\Psi \rightarrow \gamma A_1 \end{array}$$

hep-ph/0506151, hep-ph/0509024, hep-ph/0401195, hep-ph/0601090, hep-ph/0509024, hep-ex/0403036 ...


- SM Expectation: $\mathcal{B}(\Upsilon(1S) \rightarrow v\overline{v}) = (9.9 \pm 0.5) \times 10^{-6}$
- NP extension: $\mathcal{B}(\Upsilon(1S) \to \chi \chi)$ up to 6×10^{-3}
- SuperB should be able to provide a precision constraint on this channel.

τ Decays


τ→μγ / 3leptons


 Comparison of μ→eγ and τ→μγ rates can distinguish between NP scenarios.

- Can depend on the value of θ_{13} .
- Best search capability for LFV in τ→3leptons of any experiment.

SUSY seasaw = CMSSM + $3v_R$ + ∇

Adrian Bevan http://www.pi.infn.it/SuperB/

CP and CPT Violation

- SM decays of the τ have only a single amplitude so any CP violation signal is an unambiguous sign of NP.

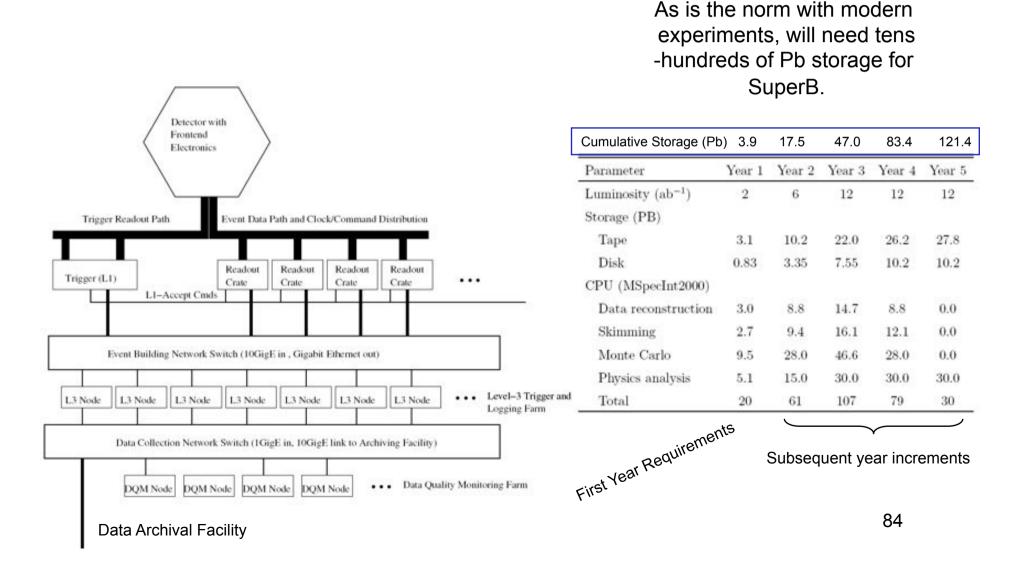
 Can have NP contributions from a Lie
 - Can have NP contributions from a H[±] in many modes, and largely experimentally un-explored.

e.g. see Datta et al., hep-ph/0610162

- CPT Violation.
 - Expect to be able to measure $\frac{\tau_{\tau^-} \tau_{\tau^+}}{\tau_{\tau^-} + \tau_{\tau^+}}$ at the level of 10⁻⁴ (statistical).
 - Current bound is $(0.12 \pm 0.32)\%$.

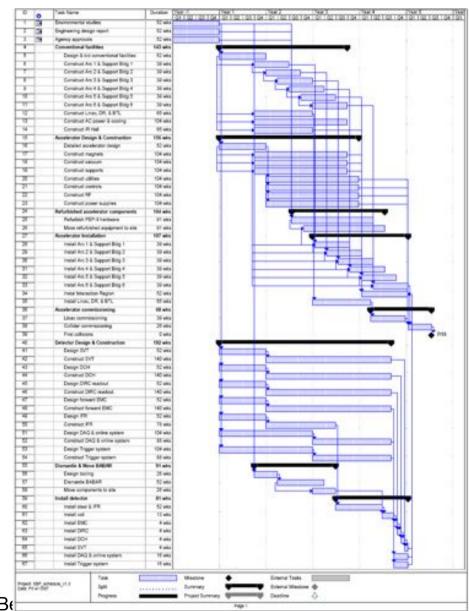
Nucl. Phys. Proc. Suppl. **144** 105 (2005)

 Polarisation of e⁺e⁻ beams benefits the search for CP and CPT violation in τ decay and the τ anomalous magnetic moment. e.g. PRD 51 3172 (1995); arXive :0707.2496 [hep-ph]


Detector Design

Requirements

- The B-factory detectors work extremely well.
 - Design of a SuperB detector, essentially means a refinement of the existing detectors.
- SuperB environment will have a higher rate.
 - Some existing detector parts are reusable.
 - Csl Calorimeter barrel.
 - DIRC quartz bars from BaBar. These 3m long bars are required for the particle identification system.
 - Superconducting Solenoid Magnet: creates a 2T magnetic field.
 - Some existing detector parts need to be replaced to cope with the expected rates.
 - Central tracking inside the particle ID system.
 - End Cap of the calorimeter.
 - Instrumented Flux Return (μ, K⁰_L detector).
 - Readout electronics.
 - Makes sense to optimise reuse in order to limit the cost of the project.


DAQ

Modelled on the BaBar Data Acquisition system.

Timescale

- Overall schedule dominated by:
 - Site construction.
 - PEP-II/Babar disassembly, transport, and reassembly.
- Possible to reach the commissioning phase after 5 years from T0.
- Physics from circa 2015?

Adrian Be

Accelerator and site costs

		EDIA	Labor	M\&S	Rep.Val.
WBS	ltem .	mm	mm	kEuro	kEuro
1	Accelerator	5429	3497	191166	126330
1.1	Project management	2112	96	1800	0
1.2	Magnet and support system	666	1199	28965	25380
1.3	Vacuum system	620	520	27600	14200
1.4	RF system	272	304	22300	60000
1.5	Interaction region	370	478	10950	0
1.6	Controls, Diagnostics, Feedback	963	648	12951	8750
1.7	Injection and transport systems	426	252	86600	18000

		EDIA	Labor	M\&S	Rep.Val.
WBS	Item	mm	mm	kEuro	kEuro
2.0	Site	1424	1660	105700	0
2.1	Site Utilities	820	1040	31700	0
2.2	Tunnel and Support Buildings	604	620	74000	0

Note: site cost estimate not as detailed as other estimates.

Funds needed to build experiment

Replacement value of parts that we can re-use.

Detector cost

		EDIA	Labor	M\&S	Rep.Val.
WBS	Item	mm	mm	kEuro	kEuro
1	SuperB detector	3391	1873	40747	46471
1.0	Interaction region	10	4	210	0
1.1	Tracker (SVT + L0 MAPS)	248	348	5615	0
1.1.1	SVT	142	317	4380	0
1.1.2	L0 Striplet option	23	33	324	0
1.1.3	L0 MAPS option	106	32	1235	0
1.2	DCH	113	104	2862	0
1.3	PID (DIRC Pixilated PMTs + TOF)	110	222	7953	6728
1.3.1	DIRC barrel - Pixilated PMTs	78	152	4527	6728
1.3.1	DIRC barrel - Focusing DIRC	92	179	6959	6728
1.3.2	Forward TOF	32	70	3426	0
1.4	EMC	136	222	10095	30120
1.4.1	Barrel EMC	20	5	171	30120
1.4.2	Forward EMC	73	152	6828	0
1.4.3	Backward EMC	42	65	3096	0
1.5	IFR (scintillator)	56	54	1268	0
1.6	Magnet	87	47	1545	9623
1.7	Electronics	286	213	5565	0
1.8	Online computing	1272	34	1624	0
1.9	Installation and integration	353	624	3830	0
1.A	Project Management	720	0	180	0

Note: options in italics are not summed. We chose to sum the options we considered most likely/necessary.

Total = 338M Euro.

= 510M Euro (counting the cost of re-used parts).

⇒ 1/3 of the cost of the project can be saved by re-using parts of BaBar and PEP-II.