
Support	Vector	Machines		
(a	brief	introduction)	

Adrian Bevan

email: a.j.bevan@qmul.ac.uk

Outline	

Adrian Bevan: QMUL

!  Overview:		
!  Introduce	the	problem	and	review	the	various	aspects	that	underpin	
the	SVM	concept.	

!  Hard	margin	SVM	
!  No	mis-classiBication	allowed	

!  Soft	margin	SVM	
!  MisclassiBication	permitted,	but	incurs	a	penalty.	

!  Kernel	functions	
!  Discuss	kernel	functions	and	their	features	before	moving	to	SVMs.	

!  Checker	board	example	
!  References	and	further	reading	

2

Overview	

Adrian Bevan: QMUL

!  Aim	is	to	classify	events	into	one	of	two	types;	signal	(+1)	and	
background	(-1).	

!  Linearly	separable	problems	can	be	treated	using	a	hard	margin	
(absolute	classiBication	with	no	classiBication	error	for	the	
optimal	SVM).	

!  Overlapping	samples	have	some	level	of	mis-classiBication,	we	
use	a	soft	margin	approach	and	introduce	parameters	to	describe	
the	penalty	of	mis-classifcation:	slack	(ξ)	and	cost	(C).	

!  We	can	use	Kernel	functions,	K,	to	map	data	from	our	problem	
space	(X)	to	a	higher	dimensional	feature	space	(F)	and	solve	the	
problem	in	this	dual	space.	

3

Hard	Margin	SVM	

Adrian Bevan: QMUL

!  Identify	the	support	vectors	(SVs)	:	these	are	the	points	
nearest	the	decision	boundary.	

!  Use	these	to	deBine	the	hyperplane	that	maximises	the	
margin	(distance)	between	the	optimal	plane	and	the	SVs.	

!  Clearly	if	we	can	do	this	with	a	SVM	–	we	would	just	cut	on	
the	data	to	get	rid	of	our	background!	

1x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1
.x+b1

w

2

.x+b2
w

3
.x+b
3

w

γ=margin

w ·
x+

b

4

Hard	Margin	SVM:	Primal	form	

Adrian Bevan: QMUL 5

!  Optimise	the	parameters	for	the	maximal	margin	
hyperplane	via:	

!  such	that	

!  This	is	equivalent	to	solving	the	following	optimisation:	

!  Where:																																		and		

argmin
w,b

1

2
||w||2

yi(w · xi � b) � 1

w =
nX

i=1

↵iyixi b =
1

NSV

nX

i=1

(w · xi � yi)

(yi is the functional margin; γi)

Hard	Margin	SVM:	Dual	form	

Adrian Bevan: QMUL 6

!  The	problem	can	be	solved	in	the	dual	space	by	minimising	
the	Lagrangian	for	the	parameters	αi	(Lagrange	
Multipliers):	

!  Such	that:																		and	

!  αi	are	non-zero	for	support	vectors	only,	and	the	last	sum	
provides	a	constraint	equation	for	optimisation.	

e
L(↵) =

nX

i=1

↵i �
1

2

X

i,j

↵i↵jyiyjx
T
i xj

=
nX

i=1

↵i �
1

2

X

i,j

↵i↵jyiyjK(xi, xj).

↵i � 0
nX

i=1

↵iyi = 0

Soft	Margin	SVM	

Adrian Bevan: QMUL

!  Relax	the	hard	margin	constraint	by	introducing	mis-
classiBication:	
!  Describe	by	slack	(ξi)	and	cost	(C)	parameters.	
!  Alternatively	describe	mis-classiBication	in	terms	of	loss	functions.	
!  These	are	just	ways	to	describe	the	error	rate.	

!  These	are	much	more	useful.	
1x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

w ·
x+

b

ξi

ξi = distance between the hyper-plane defined by
the margin and the ith SV (i.e. now this is a mis-
classified event).

Cost multiplies the sum of slack parameters in the
optimisation.

We can use kernel functions to implicitly map from
problem space to a higher dimensional dual feature
space, to simplify optimisation.

The MVA architecture complexity is embedded in
the kernel function.

7

Soft	Margin	SVM:	Dual	form	

Adrian Bevan: QMUL 8

!  The	Lagrangian	to	optimise	simpliBies	when	we	introduce	
the	slack	parameters:	

!  Where	

!  and	as	before	we	constrain:	
nX

i=1

↵iyi = 0

0 ↵i C

e
L(↵) =

nX

i=1

↵i �
1

2

X

i,j

↵i↵jyiyjK(xi, xj)

Kernel	functions	

Adrian Bevan: QMUL

!  The	kernel	function#	K(x,y)	extends	the	use	of	inner	
products	on	data	in	a	vector	space	to	a	transformed	space	
where	

!  The	book		
!  by	Nello	Cristianini	and	John	Shawe-Taylor,	called	Support	Vector	
Machines	and	other	kernel-based	learning	methods.	Cambridge	
University	Press,	2000		

				discusses	a	number	of	KFs	and	the	conditions	required	for	
these	to	be	valid	in	the	geometrical	representation	that	
SVMs	are	constructed	from.	

K(x, y) = h�(x) · �(y)i

abbrev. KF = kernel function
9

Kernel	functions:	Radial	Basis	Function	

Adrian Bevan: QMUL

!  This	is	a	commonly	used	KF	that	maps	the	data	from	X	
space	to	F	space	using	a	single	parameter.		The	distance	
between	two	support	vectors	is	computed	and	used	as	an	
input	to	a	Gaussian	KF.	

!  For	two	data	x	and	y	in	X	space	we	can	compute	K(x,	y)	as	

!  There	is	one	tuneable	parameter	in	the	mapping	from	X	to	
F;	this	is	given	by	Γ=1/σ2.	

K(x, y) = e

�||x�y||2/�2

10

Kernel	functions:	Multi-Gaussian	

Adrian Bevan: QMUL

!  This	is	an	extension	of	the	RBF	function	that	recognises	that	
the	bandwidth	of	data	in	problem	space	can	differ,	and	so	
the	norm	of	the	distance	between	two	support	vectors	can	
result	in	loss	of	information.			

!  To	overcome	this	limitation	we	can	introduce	a	σi	for	each	
dimension	in	X.	

!  The	down	side	is	that	in	doing	so	we	have	increased	the	
number	of	parameters	that	need	to	be	determined	to	
optimally	map	from	X	to	F.	

K(x, y) =

dim(X)Y

i=1

e

�||xi�yi||2/�2
i

11

Kernel	functions:	Multi-Gaussian	

Adrian Bevan: QMUL

!  The	KF	given	by	

	allows	for	a	different	σ	for	each	dimension	in	the	problem.	
!  However	it	explicitly	neglects	correlations	between	dimensions	
in	the	data.		i.e.	there	is	no	parameterisation	of	covariance	
between	xi	and	xj	here.		This	can	be	accommodated	by	a	further	
generalisation:	

!  Here	Σ	is	an	n×n	matrix,	where	n=dim(x).		It	is	the	covariance	
matrix	for	the	problem.	

!  Often	Σ	is	assumed	to	be	diagonal	for	simplicity.	
!  Typically	too	many	parameters	to	optimise	for	the	covariance	matrix	

K(x, y) =

dim(X)Y

i=1

e

�||xi�yi||2/�2
i

K(x, y) = e

�(x�y)T⌃�1(x�y)

12

Polynomial	

Adrian Bevan: QMUL

!  There	are	many	different	types	of	polynomial	kernel	
functions	that	one	can	study.	

!  A	common	variant	is	of	the	form:	

!  where	c	and	d	are	tuneable	parameters.		The	sum	is	over	
support	vectors	(i.e.	events	in	the	data	set	for	a	soft	margin	
SVM).	

13

Example:	the	checker	board	

Adrian Bevan: QMUL

!  Generate	squares	of	different	colour,	and	use	an	SVM	to	
classify	the	pattern	into	+1	and	-1	targets.	
!  This	problem	is	a	hard	margin	SVM	type	of	problem	as	the	data	do	
not	overlap.	

!  It's	not	easy	to	solve	in	2D	(x,	y)	with	a	linear	discriminant,	but	it	is	
clear	to	see	that	a	3D	(x,	y,	colour)	space	would	allow	us	to	separate	
the	squares.	

7!

X F 7!

14

Example:	the	checker	board	

Adrian Bevan: QMUL

!  Generate	1000	events	in	the	blue	and	red	squares	and	give	
each	event	x	and	y	values.	

!  Use	a	multi-Gaussian	kernel	function	with	Γ1=1,	Γ2=2	and	
cost	of	104	(not	optimised)	to	see	what	separation	we	can	
obtain.	

15

This is the ideal feature space that we
would like to implicitly map into.

Because we implicitly do the mapping
via the choice of KF, in practice we
don't map into this space; but we do
map into another space that allows us
to try and separate signal from
background (i.e. blue from red).

Example:	the	checker	board	

Adrian Bevan: QMUL

!  		Correctly	classiBied	events										Incorrectly	classiBied	
events	

!  Signal	mis-classiBication	rate	~3.3%	
!  Background	mis-classiBication	rate	~3.7%	

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

16

SVM Output
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Nu
m

be
r o

f e
nt

rie
s

0

50

100

150

200

250

300

Signal

Background

Example:	the	checker	board	

Adrian Bevan: QMUL

!  The	confusion	matrix	([in-]correctly	classiBied	events)	for	this	
example	shows	a	high	level	of	correct	classiBication:	

!  This	SVM	does	a	good	job	of	separating	signal	from	background.	
!  An	optimised	output	would	provide	a	better	solution.	

S (true) B (true)

S 945 33

B 29 967

17

Signal efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B
ac

kg
ro

un
d

re
je

ct
io

n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MVA Method:
SVM

Background rejection versus Signal efficiency

ROC curve indicates a high degree
of signal classification with low
background (high background
rejection).

Summary	

Adrian Bevan: QMUL 18

!  SVMs	are	a	modern	MVAs	based	on	linear	decision	
boundaries.	

!  They	have	the	advantage	that	they	can	be	Bitted	using	a	
small	number	of	data	(support	vectors).	

!  They	have	the	dis-advantage	that	the	computational	power	
required	to	compute	an	SVM	scales	with	the	number	of	
support	vectors	(i.e.	the	number	of	data).		
!  There	are	data	redaction	methods	(e.g.	chunking/dissection/cutting)	
that	can	help	alleviate	this	issue.	

!  There	are	algorithmic	methods	that	can	help	alleviate	this	issue.	

References	

Adrian Bevan: QMUL

!  Books:	
!  An	Introduction	to	Support	Vector	Machines	and	other	kernel-based	learning	
methods,	Cristianini	and	Shawe-Taylor	(CUP,	2014).	

!  Statistical	Analysis	Techniques	in	Particle	Physcis,	Narsky	and	Porter	(Wiley-
Vch,	2014).	

!  Tools:	
!  Matlab	and	R	have	interfaces	to	SVM	libraries.		libsvm	is	a	popular	
implementation	that	is	described	in	detail	at:	
!  https://www.csie.ntu.edu.tw/~cjlin/libsvm/	

!  ROOT	has	an	interface	to	R	(and	hence	the	R	svm	packages).		It	also	has	an	
SVM	implemented	within	TMVA:	
!  https://root.cern.ch		

19

Sequential	Minimal	Optimisation	(SMO)	

Adrian Bevan: QMUL

!  The	dual	form	of	the	Lagrangian	minimised	for	SVMs	
depends	on	Lagrange	multipliers	(αi)	that	satisfy	a	

				constraint	equation																			as	opposed	to	the	weight	and	
bias	parameters.	

!  Rather	than	take	a	brute	force	approach	to	optimising	for	
the	αi,	SVMs	use	the	constraint	equation	to	select	pairs	of	
SVs	with	the	largest	slack	values	and	change	the	αi's	in	pairs	
to	retain	the	overall	constraint.	

!  This	iterative	process	occurs	for	all	SVs	a	number	of	times;	
so	while	the	number	of	steps	is	larger	than	a	brute	force	
approach,	the	overall	computing	cost	is	smaller.	

20

nX

i=1

↵iyi = 0

