

Flavour Physics at e⁺e⁻ machines: Past/Present and Future

- There are three files:
 - 1) Introduction and formalism (this one)
 - 2) Results and future experiments
 - 3) Appendices

Preamble OUTLINE NOTES

Outline

These lectures will cover:

- Introduction
 - The B factories
 - CKM, and measuring CP asymmetries
- B Physics:
 - Unitarity triangle physics
 - CP violation measurements
 - The angles: $(\alpha, \beta, \gamma) = (\phi_2, \phi_1, \phi_3)$
 - Direct CP violation
 - Searching for new physics
 - Side measurements (result in brief)
 - Rare Decays

Outline

These lectures will cover:

- D Physics
 - Mixing, and CP violation potential
- Leptons
 - Tau charged LVF
- The Future:
 - Belle II and Super KEKB
 - A future linear collider (ILC/Higgs Factory/CLIC...)

Appendices cover

- More on α / Φ_2
- How does a global fit/new physics model constraint work?
- Nomenclature (main differences between BaBar & Belle).
- Testing T symmetry invariance in B decays.

Outline

These lectures will not cover:

- Sides of the unitarity triangle (not discussed in detail).
- Spectroscopy: X, Y, Z studies etc.
- Low mass new physics searches:
 - light (<10GeV) scalar Higgs or Dark matter searches.
 - Dark forces searches.
- B_s decays
- QCD physics
- As well as many other B, D and τ topics.

- The B factories have produced many excellent results (well over 800 papers combined).
 - Rather than show the results for both experiments for each measurement, I have selected results from either BaBar or Belle.
 - Where possible I show world average results based on the latest measurements.
 - I choose to use the α, β, γ convention for the Unitarity triangle angle measurements, and the S, C convention for time -dependent *CP* asymmetry measurements.
 - In general, charge conjugate modes are implied in discussions, unless referring specifically only to a particle or anti-particle decay mode/amplitude.
- BaBar and Belle, in collaboration with a number of theorists are finalising "*The Physics of the B Factories*", Ed. AB, B. Golob, T. Mannel, S. Prell and B. Yabsley (*with a long author list*). This will be available later in 2013, please refer to that for an extensive discussion of what has been achieved.

Introduction

NOTES:

- SEE LECTURES BY U. NIRSTE FOR GENERAL THEORETICAL ISSUES, SUCH AS NEUTRAL MESON MIXING.
- SEE LECTURES BY J. BERNABEU REGARDING T AND CPT NON-CONSERVATION FORMALISM.
- SEE LECTURES BY G. COWAN FOR DETAILS ON MULTIVARIATE METHODS USED.
- SEE LECTURES BY M-H. SCHUNE REGARDING RECENT RESULTS FROM LHCB.

Introduction

- CP violation was discovered in 1964.
- Kobayashi and Maskawa proposed a model to accommodate CP violation (CPV) naturally.
 - Postulated three generations of particle.
 - One irreducible phase that can be used to manifest CPV in the SM.
 - This means that CPV in kaon, beauty, charm and top are related:
 - Measuring CPV in one system allows one to predict CPV in any other system.
 - Strange quark interactions dictated the level of CPV in the SM, and from these one could predict the levels expected in beauty.
 - The B Factories were build to test these predictions.

• CP violation in the neutral kaon system is small:

$$|\varepsilon| = (2.228 \pm 0.011) \times 10^{-3}$$

 $\varepsilon'/\varepsilon| = (1.65 \pm 0.26) \times 10^{-3}$

- CP violation was predicted to be large in some neutral B meson decays.
 - An O(1) effect was expected in $B^0 \rightarrow J/\psi K^0$ decays, manifest in a proper time-dependent distribution.

e.g. see I. I. Bigi and A. Sanda. Nucl.Phys. B193, 85 (1981).

- Difficult to study this via a symmetric energy machine, however details of a proposed method exists – but was e.g. see K. Berkelman, Mod.Phys.Lett. A10 (1995) 165-172.
- A better solution was found, involving asymmetric energy colliders. This will be discussed shortly.

e.g. see P. Oddone. UCLA Linear- Collider BB Factory Concep. Design: Proceedings , 423–446 (1987).

Introduction

 B mesons were found to have a long life (1983), and to have a large mixing frequency (1987).

$$\tau_B = (1.525 \pm 0.009) \, ps$$

 $\Delta m = (0.507 \pm 0.005) \, / ps$

 Both physical features are required in order to be able to measure CP violation in B decays.

The CKM matrix

Quarks change type in weak interactions:

• We parameterise the couplings V_{ii} in the CKM matrix:

$$V = \begin{pmatrix} 1 - \lambda^2 / 2 & \lambda & A\lambda^3 (\rho - i\eta) \\ -\lambda & 1 - \lambda^2 / 2 & A\lambda^2 \\ A\lambda^3 (1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4) & \lambda \sim 0.22 \\ \rho \sim 0.2 - 0.27 \\ \eta \sim 0.28 - 0.37 \end{pmatrix}$$

• At the B factories we want to measure: $\overline{\rho} + i\overline{\eta} \equiv -\frac{V_{\rm ud}V_{\rm ub}^*}{V_{\rm cd}V_{\rm cb}^*}$ May 2013 $\overline{\rho} \approx \rho(1 - \lambda^2/2), \quad \overline{\eta} \approx \eta(1 - \lambda^2/2)$

12

- CKM expansions up to O(λ³) have been good enough to understand the broad picture of CP violation in B decays.
- If one wants to understand precision contributions, and in particular CP violation in charm, then one has to go to O(λ⁵).
- At this order the CKM matrix becomes

$$V_{CKM} = \begin{pmatrix} 1 - \lambda^2/2 - \lambda^4/8 & \lambda & A\lambda^3(\bar{\rho} - i\bar{\eta}) + A\lambda^5(\bar{\rho} - i\bar{\eta})/2 \\ -\lambda + A^2\lambda^5[1 - 2(\bar{\rho} + i\bar{\eta})]/2 & 1 - \lambda^2/2 - \lambda^4(1 + 4A^2)/8 & A\lambda^2 \\ A\lambda^3[1 - \bar{\rho} - i\bar{\eta}] & -A\lambda^2 + A\lambda^4[1 - 2(\bar{\rho} + i\bar{\eta})]/2 & 1 - A^2\lambda^4/2 \end{pmatrix} + \mathcal{O}(\lambda^6)$$

- Remember that rephasing invariance means that if one associates a weak phase with a CKM matrix element – that association becomes convention dependent.
- Physical results are invariant of convention.

e.g. see AB, Inguglia, Meadows, PRD 84 (2011) 114009 for a discussion of what can be done with CP violation in charm decays in the future

 CKM expansions up to O(λ³) have been good enough to 							
	understand	Note: any relationship between V _{ii} and a	B decays.				
•	If one wants particular C	complex phase is model dependent statement. i.e. it is a statement that is true in a particular representation of the CKM matrix.	ns, and in ο go to Ο(λ ⁵).				
$V_{CKM} =$	At this order $\begin{pmatrix} 1 - \lambda^2/2 - \\ -\lambda + A^2 \lambda^5 [1 - 2 \\ A \lambda^3 [1 - \overline{\rho}] \end{pmatrix}$	Physical observables are independent of the chosen phase convention, and so one should take care when discussing where the CP violating phase enters a particular decay mode. Invariants are related to the $ V_{ij} $ and quartets of different V_{ij} terms.	$\left(\begin{array}{c} +A\lambda^5(\bar{ ho}-i\bar{\eta})/2\\ A\lambda^2\\ -A^2\lambda^4/2 \end{array} ight) + \mathcal{O}(\lambda^6)$				
•	Remember	Ususally experimentalists are sloppy and	at if one				
	associates	relate phases directly to a V_{ij} , in this case the	ement – that				
	association	Wolfenstein / Buras parameterisation is assumed					
•	Physical res						
e.g. see AB, Inguglia, Meadows, PRD 84 (2011) 114009 for							

e.g. see AB, Inguglia, Meadows, PRD 84 (2011) 114009 for a discussion of what can be done with CP violation in charm decays in the future

A brief history of CP violation: 1964-2001

- **1964**:
 - Christensen, Cronin, Fitch and Turlay discover CP violation.
- 1967:
 - A. Sakharov: 3 conditions required to generate a baryon asymmetry:
 - Period of departure from thermal equilibrium in the early universe.
 - Baryon number violation.
 - C and CP violation.
- 1973:
 - Kobayashi and Maskawa propose a model of CP violation.

M. Kobayashi and T. Maskawa Prog. Theor. Phys. **49**, 652–657 (1973)

- 1981:
 - I. Bigi and A. Sanda propose measuring CP violation in $B \rightarrow J/\psi K^0$ decays.

I. Bigi and A. Sanda Nucl.Phys.B193 p85 (1981)

- 1987:
 - P. Oddone realizes how to measure CP violation: convert the PEP ring into an asymmetric energy e⁺e⁻ collider.
 Detector Considerations P. Oddone (LBL, Berkeley). 1987 In the Precedings of Workshop on Concentral Design of a Test

Detector Considerations P. Oddone (LBL, Berkeley) . 1987 In the Proceedings of Workshop on Conceptual Design of a Test Linear Collider: Possibilities for a B Anti-B Factory, Los Angeles, California, 26-30 Jan 1987, pp 423-446.

- **1**999:
 - BaBar and Belle start to take data. By 2001 CP violation has been established (and confirmed) by measuring sin2β ≠0 in B→ J/ψK⁰ decays.

May 2013

Adrian Bevan

B Factory Facilities BABAR & PEP-II, BELLE & KEKB

PEP-II and **KEKB**

Adrian Bevan

BABAR and Belle

How do we make B mesons?

 Collide electrons and positrons at √s=10.58 GeV/c²

$e^+e^- \rightarrow$	Cross-section (nb)	²⁵
$b\overline{b}$	1.05	$\hat{\mathbf{g}}_{20}$ (1S)
$c\overline{c}$	1.30	
$s\overline{s}$	0.35	₫ 15 Y(4S)
$d\overline{d}$	0.35	off-peak
$u\overline{u}$	1.39	
$\tau^+\tau^-$	0.92	
$\mu^+\mu^-$	1.16	b + +++ ++++ +++++++++++++++++++++++++
e^+e^-	~ 40	
many type	s of interaction occur.	$Mass (GeV/c^{2})$

- We're (only) interested in $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$ (for B physics).
- Where

Most measurements assume equal production of charged and neutral B mesons, given that the measurement of this ratio is not significantly different from 0.5.

The other processes constitute backgrounds for B physics.

How do we make B mesons?

• Pairs of B mesons are produced in P-wave entangled state:

- The entangled state has several consequences of relevance:
 - At the time one of the B mesons decays into a flavour specific final state, the other meson flavour can be inferred (as mixing is well known).
 - i.e. we can tag (with high efficiency) if a neutral B meson as a b or anti-b quark in it when performing CP violation tests.
 - We can also perform T and CPT symmetry tests.

- At the same time we get large numbers of D mesons and tau lepton pairs.
 - So the B Factories are really B, D and T factories, and have made important contributions to these areas.
- The B Factories ran at other centre of mass (CM) energies as well. These extend the physics programme in a number of different ways – however those results are beyond the scope of these lectures.
- Data sets collected are summarised below.

Experiment	Resonance	On-peak	Off-peak
-		Luminosity (fb^{-1})	Luminosity (fb^{-1})
BABAR	$\Upsilon(4S)$	424.2	43.9
	$\Upsilon(3S)$	28.0	2.6
	$\Upsilon(2S)$	13.6	1.4
	$\mathrm{Scan} > \Upsilon(4S)$	n/a	$\sim \!\! 4$
Belle	$\Upsilon(5S)$	121.1	1.7
	$\Upsilon(4S)$ - $\mathrm{SVD1}$	140.7	15.6
	$\Upsilon(4S)$ - $\mathrm{SVD2}$	562.6	73.8
	$\Upsilon(3S)$	2.9	0.2
	$\Upsilon(2S)$	24.9	1.7
	$\Upsilon(1S)$	5.7	1.8
	$\operatorname{Scan} > \Upsilon(4S)$	n/a	25.6

Data

- The cumulative (BaBar+Belle) total number of recorded B mesons is over 1.2 billion.
- These are well reconstructed events, where one event occurs at a given time (i.e. no pile up problems to deal with; c.f. LHC).

What does an event look like?

• A somewhat easier environment to work in than the LHC.

What does an event look like?

Techniques GENERAL RECONSTRUCTION ISSUES

Isolating signal events

 A B event typically can be split into two hemispheres (in the CM frame): a signal side and an "other B" side. e.g.

 A B event typically can be split into two hemispheres (in the CM frame): a signal side and an "other B" side. e.g.

 ℓ^+

 π

- Beam energy is known very well at an e⁺e⁻ collider
 - Use an energy difference and effective mass to select events: $m_{ES} = \sqrt{(s/2 + \mathbf{p}_i \cdot \mathbf{p}_B)^2 / E_i^2 - \mathbf{p}_B^2},$
 - \sqrt{s} : beam energy in the CM frame.
 - E_B^* : energy of $B_{\rm rec}$ in the CM frame.
 - \mathbf{p}_B : momentum of B_{rec} in the lab frame.
 - (E_i, \mathbf{p}_i) : four-momentum of the initial state in the lab frame.

These concepts apply to CLEO, BaBar, Belle (II) and can be extended to a future Linear collider/Higgs Factory Re: top.

More background suppression

- Use the shape of an event to distinguish between $\Upsilon(4S) \to B\overline{B}$ and $e^+e^- \to q\overline{q}$.
- $\sqrt{s}=10.58$ GeV: compare $m_{BB} = 10.56$ GeV/c² with
 - m_{uu} , m_{dd} , $m_{ss} \sim few to 100 MeV/c^2$
 - m_{cc} ~ 1.25 GeV/c²

B-pair events decay isotropically

Analyses combine several event shape variables in a single discriminating variable: either Fisher or artificial Neural Network (usually a MLP).

Different papers have different approaches.

This allows for some discrimination between B and continuum events

More background suppression

- Use the shape of an event to distinguish between $\Upsilon(4S) \to B\overline{B}$ and $e^+e^- \rightarrow q\overline{q}$.
- $\sqrt{s}=10.58$ GeV: compare m_{BB} = 10.56 GeV/c² with
 - m_{uu} , m_{dd} , $m_{ss} \sim few to 100 MeV/c^2$

B-pair events de

See Lectures by Glen Cowan for details of other commonly used multivariate techniques.

n Bevan

Analyses combine sev variables in a single di variable: either Fisher

Network (usually a MLP).

Different papers have different approaches.

This allows for some discrimination between B and continuum events

Techniques TIME DEPENDENT METHODS

Time integrated CP asymmetries

- Charged B mesons do not oscillate.
- Measure a direct CP asymmetry by comparing amplitudes of decay:

$$A_{CP} = \frac{\overline{N} - N}{\overline{N} + N}$$

- Event counting exercise!
- With two (or more) amplitudes

$$A_1 = a_1 e^{i(\phi_1 + \delta_1)}$$
$$A_2 = a_2 e^{i(\phi_2 + \delta_2)}$$

see that we need different weak and strong phases to generate.

- A_{CP} is largest when $a_1 = a_2$.
- Need to measure δ!

Time integrated CP asymmetries

- Charged B mesons do not oscillate.
- Measure a direct CP asymmetry by comparing amplitudes of decay:

$$A_{CP} = \frac{\overline{N} - N}{\overline{N} + N}$$

- Event counting exercise!
- With two (or more) amplitudes

$$A_1 = a_1 e^{i(\phi_1 + \delta_1)}$$
$$A_2 = a_2 e^{i(\phi_2 + \delta_2)}$$

see that we need different weak

and strong phas The problem with using direct CP asymmetries to constrain the SM is that we don't priori

- A_{CP} is largest w know the strong phase differences. For this reason direct CP violation should be seen as a
- Need to measu binary test: it is there or it is not there.
 Generally large hadronic uncertainties are

Generally large hadronic uncertainties are

 We can use this introduced when trying to relate A_{CP} to a neutral B meso measured weak phase.

(² ² ² ² ² ² ²

- Ingredients of a time-dependent CP asymmetry measurement:
 - Isolate interesting signal B decay: B_{REC}.
 - Identify the flavour of the non-signal B meson (B_{TAG}) at the time it decays.
 - Measure the spatial separation between the decay vertices of both B mesons: convert to a proper time difference Δt = Δz / βγc; fit for S and C.
- The time evolution of $B_{TAG} = B^0(\overline{B}^0)$ is

Note that Belle use a convention where C is replaced by $A_{CP} = -C$

$$f_{\pm}(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \bigg\{ 1 \pm \left[-\eta_f S \sin(\Delta m_d \Delta t) - C \cos(\Delta m_d \Delta t)\right] \bigg\}.$$

- Ingredients of a time-dependent CP asymmetry measurement:
 - Isolate interesting signal B decay: B_{REC}.
 - Identify the flavour of the non-signal B meson (B_{TAG}) at the time it decays.
 - Measure the spatial separation between the decay vertices of both B mesons: convert to a proper time difference Δt = Δz / βγc; fit for S and C.
- The time evolution of $B_{TAG} = B^0(\overline{B}^0)$ is

$$S = \frac{2 \Im \lambda_{\rm CP}}{1 + |\lambda_{\rm CP}|^2},$$
$$C = \frac{1 - |\lambda_{\rm CP}|^2}{1 + |\lambda_{\rm CP}|^2},$$

$$\sqrt{S^2+C^2} \leq 1$$

- S is related to CP violation in the interference between mixing and decay.
- C is related to direct CP violation.
- η_f is the CP eigenvalue of B_{REC} .

- Ingredients of a time-dependent CP asymmetry measurement:
 - Isolate interesting signal B decay: B_{REC}.
 - Identify the flavour of the non-signal B meson (B_{TAG}) at the time it decays.
 - Measure the spatial separation between the decay vertices of both B mesons: convert to a proper time difference Δt = Δz / βγc; fit for S and C.
- The time evolution of $B_{TAG} = B^0(\overline{B}^0)$ is

- Ingredients of a time-dependent CP asymmetry measurement:
 - Isolate interesting signal B decay: B_{REC}.
 - Identify the flavour of the non-signal B meson (B_{TAG}) at the time it decays.
 - Measure the spatial separation between the decay vertices of both B mesons: convert to a proper time difference Δt = Δz / βγc; fit for S and C.
- The time evolution of $B_{TAG} = B^0(\overline{B}^0)$ is

- Ingredients of a time-dependent CP asymmetry measurement:
 - Isolate interesting signal B decay: B_{REC}.
 - Identify the flavour of the non-signal B meson (B_{TAG}) at the time it decays.
 - Measure the spatial separation between the decay vertices of both B mesons: convert to a proper time difference Δt = Δz / βγc; fit for S and C.
- The time evolution of $B_{TAG} = B^0(\overline{B}^0)$ is

- Ingredients of a time-dependent CP asymmetry measurement:
 - Isolate interesting signal B decay: B_{REC}.
 - Identify the flavour of the non-signal B meson (B_{TAG}) at the time it decays.
 - Measure the spatial separation between the decay vertices of both B mesons: convert to a proper time difference Δt = Δz / βγc; fit for S and C.
- The time evolution of $B_{TAG} = B^0(\overline{B}^0)$ is

Construct an asymmetry as a function of Δt :

$$\mathcal{A}(\Delta t) = \frac{\Gamma(\Delta t) - \overline{\Gamma}(\Delta t)}{\Gamma(\Delta t) + \overline{\Gamma}(\Delta t)}$$

$$\mathcal{A}(\Delta t) = S\sin(\Delta m_d \Delta t) - C\cos(\Delta m_d \Delta t)$$

b)

• Construct an asymmetry as a function of Δt :

$$\mathcal{A}(\Delta t) = \frac{\Gamma(\Delta t) - \overline{\Gamma}(\Delta t)}{\Gamma(\Delta t) + \overline{\Gamma}(\Delta t)}$$

$$\mathcal{A}(\Delta t) = S\sin(\Delta m_d \Delta t) - C\cos(\Delta m_d \Delta t)$$

Measuring Δt

Measuring Δt

Measuring Δt

Then fit the ∆t distribution to determine the amplitude of sine and cosine terms.

Flavor tagging

- Don't always identify B_{TAG} flavor correctly: asymmetry diluted by (1-2w)
- ω is probability for assigning the wrong flavor (mistag probability).

$$N_{B^0}^{tag} = (1 - \omega_{B^0})N_{B^0} + \omega_{B^0}N_{\overline{B}^0}$$
$$Q = \epsilon_{tag}(1 - 2w)^2$$

$$\Delta \omega = \omega_{B^0} - \omega_{\overline{B}^0}$$
$$\omega = \frac{1}{2} (\omega_{B^0} + \omega_{\overline{B}^0})$$

$$N_{B^0,\overline{B}^0}^{tag}$$
 = the number of reconstructed events found in data
 N_{B^0,\overline{B}^0} = the true number of events (i.e. numbers obtained if $\omega = 0$)

Flavor tagging

- Decay products of B_{TAG} are used to determine its flavor.
- At $\Delta t=0$, the flavor of B_{REC} is opposite to that of other B_{TAG} .
- B_{REC} continues to mix until it decays.
- Different B_{TAG} final states have different *purities* and different *mis-tag probabilities*.
- Can (right) split information by physical category or (below) use a continuous variable to distinguish particle and anti-particle.

BaBar's flavor tagging algorithm splits events into mutually exclusive categories ranked by signal purity and mis-tag probability. Belle opt to use a continuous variable output. These plots are for the 316fb⁻¹ h⁺h⁻ data sample.

Adrian Bevan

Flavor tagging

- Don't always identify B_{TAG} flavor correctly: asymmetry diluted by (1-2w)
- ω is probability for assigning the wrong flavor (mistag probability).
- Effect is slightly different for B^0 and B^0 tags: $\Delta \omega$
- Define an effective tagging efficiency: $Q = \epsilon_{tag}(1 2w)^2$
- Use a modified $f_{\pm}(\Delta t)$:

 $\frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \{ (1 \mp \Delta \omega) \pm (1 - 2\omega) \times [-\eta_f S \sin(\Delta m_d \Delta t) - C \cos(\Delta m_d \Delta t)] \}$

Example: The BaBar tagging algorithm:

Category	$\epsilon_{ m tag}$ (%)	$\omega~(\%)$	$\Delta \omega$ (%)	Q (%)
Lepton	8.2 ± 0.1	3.2 ± 0.5	-0.2 ± 0.8	7.2 ± 0.2
Kaon I	11.3 ± 0.1	3.7 ± 0.7	1.1 ± 1.2	9.7 ± 0.3
Kaon II	17.3 ± 0.2	14.2 ± 0.7	-0.9 ± 1.1	8.8 ± 0.3
Kaon-Pion	13.4 ± 0.1	20.8 ± 0.8	0.5 ± 1.3	4.6 ± 0.3
Pion	13.8 ± 0.2	30.6 ± 0.8	4.1 ± 1.3	2.1 ± 0.2
Other	9.4 ± 0.1	40.1 ± 1.0	2.3 ± 1.5	0.4 ± 0.1
Untagged	26.8 ± 0.2	50.0 ± 0.0	-	0.0 ± 0.0
Total				32.7 ± 0.7

Belle does essentially the same thing, the only difference is in the way that flavour tagging information is used. For Belle a continuous variable is determined, based on the probability for an event to be a B candidate or not. The quark flavor b=+/-1 is then used to parameterise dilution for the ensemble of events.

• Perform an extended un-binned ML fit in several dimensions (2 to 8). $\exp(-\sum_{i} n_{j}) \prod_{i=1}^{N} \sum_{j=1}^{N} \sigma_{j}$

$$\mathcal{L} = \frac{\exp(-\sum_j n_j)}{N!} \prod_{i=1}^{N} \sum_{j=1}^{N} n_j \mathcal{P}_j^i$$

- \mathcal{P}_{j}^{i} is the probability density function for the ith event and jth component (type) of event.
- n_i is the event yield of the jth component.
- N is the total number of events.
- Usually replicate the likelihood for each tagging category (BaBar) or include a variable in the fit that incorporates flavor tagging information (Belle).
- In practice we minimize –In *L* in order to obtain the most probable value of our experimental observables with a 68.3% confidence level (1σ error) using MINUIT.
- S and C (or A_{CP}) are observables that are allowed to vary when we fit the data.