
AFit User Guide

Adrian Bevan1, Fergus Wilson2

December 24, 2010

Abstract

AFit provides a high level user interface to RooFit and TMVA. Complicated maximum-likelihood
fits can be set up using a text file (without the need to write a lot of code), and modified
quickly to refine an analysis. There are a number of utilities to facilitate further analysis of the
likelihood fit, such as toy MC, and plotting interfaces. The TMVAInterface provided allows a
user to configure which classifiers to run with which variables. It is then possible to append
RooDataSets with the output classifier MVAs for inclusion in a fit to the data. A number of
examples are provded in the last section of this user guide.

Contents

1 Introduction to AFit 3

1.1 Platform Requirements . 4

2 PDFs 4

2.1 Parameter naming convention . 4

2.2 Argus . 5

2.3 Breit Wigner . 6

2.3.1 Non-relativistic Breit Wigner (or Cauchy) function 6

2.3.2 Relativistic Breit Wigner (with a Blatt-Weisskopf Form Factor) 6

2.4 Bukin Function . 8

2.5 Chebychev Polynomial . 9

2.6 Crystal Ball . 10

2.7 Decay Models . 11

2.7.1 The Decay Model . 11

2.7.2 The BDecay Model . 11

2.7.3 The BCPGenDecay Model . 12

2.8 Disappearance PDF . 12

1a.j.bevan@qmul.ac.uk, Queen Mary, University of London
2fergus.wilson@stfc.ac.uk, Rutherford Appleton Laboratory

1

2.9 Exponential . 12

2.10 Flatte Function . 14

2.11 Gaussian . 15

2.12 Generic PDF with functional form f(x) . 15

2.13 Gounaris-Sakurai lineshape PDF . 16

2.14 Helicity PDF . 17

2.15 Histogram (non-parametric PDF) . 18

2.16 KEYS (non-parametric PDF) . 19

2.17 Landau . 20

2.18 Novosibirsk . 20

2.19 Polynomial . 21

2.20 Parametric Step Function . 22

2.21 Resolution . 24

2.22 Sigmoid . 25

2.23 Step Function . 26

2.24 Voigtian . 26

2.25 Composite Add PDF . 27

2.26 Composite Multiply PDF . 27

2.27 Multi-dimensional PDFs . 28

2.28 PDF summary . 28

3 Fit Components 30

3.1 The default fit component . 30

3.2 Scalar to Vector Vector decays (vvpolarisation) 30

3.3 Composite component model (composite) . 31

4 Building a Fit model 31

4.1 The makePdf function . 32

4.2 The makeSimPdf function . 32

4.3 The makeConditionalPdf function . 32

4.4 The fitParameters function . 32

4.5 The persist function . 33

4.6 The writeDataCard function . 33

2

4.7 The fitData function . 35

4.8 Blinding yields . 35

4.9 Replacing Variables In A PDF . 35

4.10 Computing systematic uncertainties . 36

5 Utilities 36

5.1 Statistical analysis . 36

5.1.1 Pearson Correlation Coefficients . 36

5.1.2 Spearmans Rank Correlation Coefficients 37

5.1.3 Miscellaneous . 38

5.2 Projection Plots . 38

5.2.1 Example: Enhancing the signal for a 2D fit model 38

5.2.2 Example: Plotting an asymmetry . 39

5.2.3 Pull Plots . 40

5.2.4 Likelihood Projection Plots . 41

5.3 Likelihood Ratio Plots . 43

5.4 TMVA Interface . 44

5.5 Toy Monte Carlo Validation of the likelihood . 45

5.6 Toy Monte Carlo Validation: Embedded Toys . 47

6 Examples 48

6.1 Fitting the muon lifetime . 48

6.2 Simple rare B decay search at BaBar or Belle . 50

6.3 Fitting a ∆t resolution function . 52

6.4 RooSimultaneous: splitting a PDF by categories 53

6.5 Time-dependent CP asymmetry fit . 54

7 Acknowledgements 56

1 Introduction to AFit

This package has been developed in order to add a layer of abstraction on top of RooFit [1]
and simplify complex maximum likelihood fit based data analysis. The underlying function
minimiser is MINUIT [2]. The aim of AFit is to provide a general fit framework that can be

3

used in order to analyse data, but without having to write code in order to set the fit up. In
order to do set up a general fit, you can configure AFit using a ’datacard’. In addition to this
high level abstraction, it is also possible to use the individual wrapper classes to the RooFit
Probability Density Functions (PDFs) when addressing simple problems. The default version
of RooFit to use with AFit is the version bundled with ROOT [3].

AFit provides a higher level interface to RooFit that facilitates using a text configuration file to
construct a complicated multidimensional likelihood fit model. There are also a number of tools
and interfaces provided to simplify validation of the likelihood fit as well as performing analysis
of the data. The rest of this document summarises the available PDFs (Section 2), different
types of multi-dimensional component PDFs that can be constructed (Section 3), how to use
the AFitMaster to construct a PDF model (Section 4), the various utilities available (Section 5),
and working examples (Section 6). If you are already very familiar with the use of RooFit and
maximum-likelihood fitting, you might consider starting to work through the examples section
before reading all of the earlier sections of this user guide.

The main underlying statistical techniques used by RooFit and AFit are described in more detail
in the following references [4, 5] as well as other books on statistics and data analysis.

1.1 Platform Requirements

The AFit package has been tested using

• gcc version 3.4.6 20060404

• The current beta version of AFit is being tested using ROOT version 5.26/00.

• Scientific Linux

2 PDFs

This section summarises the library of PDFs that are implemented in AFit. There are code
snippets illustrating how to use the different PDFs described below. However for more compli-
cated likelihood fit models, it is more practical to use the AFitMaster class as an interface to
the PDF classes described here (See Section 4).

2.1 Parameter naming convention

The parameter names for all simple PDF components described in this section follow the same
rule. The parameter name is constructed from two parts separated by a underscore (): (i)
the PDF name, folllowed by (ii) the parameter variable name. For example, if we consider a
Gaussian PDF with a PDF name “myGaussian”, then the name of the mean of the Gaussian
will be “myGaussian mean”. See Table 1 for a list of variable names for each PDF.

The following code shows how to make a Gaussian PDF and then change the value of the
parameters.

4

RooRealVar x(‘‘x’’, ‘‘’’, -4.0, 4.0);

// The Gaussian PDF with default settings

AFitGaussian gausshape(x, ‘‘mypdfname’’);

// re-define default settings

gaussshape.setParameter(‘‘mean’’, 175.0);

gaussshape.setParameter(‘‘width’’, 3.0);

RooAbsPdf * gausPDF = gausshape.getPdf();

When building an AFitProdPdf the naming convention for the PDF follows the extended rule
of (i) PDF component name followed by (ii) discriminating variable name, followed by (iii)
parameter variable name. In this case, there will be an underscore between (i) and (ii). For
example, the signal component for a one-dimensional fit in some variable x will have the PDF
component name “signal”. If this is described by a Gaussian distribution, then the mean of that
distribution will have the parameter name “signal xmean”.

These conventions are imposed in order to help users configure their fits efficently.

2.2 Argus

This is the distribution used for a parametric description of a combinatorial background shape,
as first used by the ARGUS Collaboration [6]:

P(m ;m0, ξ) =
1

N
· m

√

1 − (m/m0)2 · exp(ξ (1 − (m/m0)
2)) · θ(m < m0) (1)

where θ(m < m0) = 1 and θ(m > m0) = 0. This PDF has a type ’argus’ when using the
AFitPdfFactory (see below). The following is an example of the code necessary to make an
ARGUS PDF in AFit:

// the discriminating variable x is the beam constrained B meson mass.

RooRealVar x(‘‘x’’, ‘‘’’, 5.25, 5.29);

// The AUGUS PDF

AFitArgus argus(x, ‘‘arguspdf’’);

RooAbsPdf * argusPDF = argus.getPdf();

By default the ARGUS PDF will have an endpoint m0 = 5.29 and slope ξ = −50, as shown in
Figure 1.

5

5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29 5.3

P
ro

je
ct

io
n

 o
f

A
rg

u
s

F
u

n
ct

io
n

0.002

0.004

0.006

0.008

0.01

0.012

0.014

5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29 5.3

P
ro

je
ct

io
n

 o
f

A
rg

u
s

F
u

n
ct

io
n

0.002

0.004

0.006

0.008

0.01

0.012

0.014

A RooPlot of ""

Figure 1: An example of the ARGUS PDF shape.

2.3 Breit Wigner

2.3.1 Non-relativistic Breit Wigner (or Cauchy) function

The non-relativistic Breit Wigner function (also called a Cauchy function) is given by

P(x ;m0,Γ) =
1

(x−m2
0) + (Γ/2)2)

(2)

and is shown in Figure 2. Here m0 is the position of the peak and Γ is the width of the peak.

The following code snippet is sufficient to build a non-relativistic Breit-Wigner PDF (bwPDF).
By default the mass and width of the PDF are 0.770 and 0.150, respectively. The variable names
for the mass and width of the PDF are the name of the pdf, in this case bwpdf, followed by m0

and width.

// x is the resonance mass (e.g. m rho)

RooRealVar x(‘‘x’’, ‘‘’’, 0.5, 1.0);

AFitBreitWigner bw(x, ‘‘bwpdf’’);

RooAbsPdf * bwPDF = bw.getPdf();

2.3.2 Relativistic Breit Wigner (with a Blatt-Weisskopf Form Factor)

The relativistic Breit Wigner form implemented in AFit is described in the following.

P(m ;m0,Γ0, J, R) =
m2

(m2 −m2
0)

2 +m2
0Γ

2(m)
(3)

6

0 0.5 1

E
nt

ri
es

0.02

0.04

0 0.5 1

E
nt

ri
es

0.02

0.04

Figure 2: An example of the Breit Wigner PDF shape.

where the mass dependent width is given by

Γ(m) = Γ0
m0

m

(

k(m)

k(m0)

)2J+1 F (Rk(m))

F (Rk(m0))
, (4)

k(m) =
m

2

(

1 − (ma +mb)
2

m2

)1/2(

1 − (ma −mb)
2

m2

)1/2

, (5)

and the functions F are the spin dependent Blatt-Weisskopf form factors,

F J=0(x) = 1 (6)

F J=1(x) =
1

1 + x2
(7)

F J=2(x) =
1

9 + 3x2 + x4
(8)

In Eq. 4 m0 is the mass of the resonance, Γ0 is its width, J is its spin and R is the interaction
radius. The event generator on BaBar, EvtGen, uses a range parameter, of 3.0GeV −1 ≃ 0.6fm.
The parameters ma and mb are the masses of the daughters of the decaying resonance.

The corresponding distribution for a ρ meson described by this PDF is shown in Fig. 3, where
m0 = 0.77GeV/c2, Γ0 = 0.15GeV, J = 1, R = 3.0GeV −1, and ma = mb = 0.135GeV/c2. The
allowed values of J are 0, 1, and 2.

The following code snippet illustrates how to instantiate an AFitRelBreitWigner.

7

x
0.4 0.6 0.8 1 1.2

E
nt

ri
es

0

0.01

0.02

0.03

0.04

x
0.4 0.6 0.8 1 1.2

E
nt

ri
es

0

0.01

0.02

0.03

0.04

Figure 3: An example of the relativistic Breit Wigner PDF shape for a ρ meson.

RooRealVar x(‘‘x’’, ‘‘’’, 0.0, 1.0);

AFitRelBreitWigner bw(x, ‘‘bwpdf’’);

RooAbsPdf * bwPDF = bw.getPdf();

2.4 Bukin Function

The Bukin function is given by

P(x ;xp, σp, ξ, ρ) = Ap exp







ξ
√

ξ2 + 1(x− x1)
√

2 ln 2

σp

(

√

ξ2 + 1 − ξ
)2

ln
(

√

ξ2 + 1 + ξ
)

+ ρ

(

x− xi

xp − xi

)2

− ln 2






, (9)

where ρ = ρ1 and xi = x1 for x < x1, and ρ = rho2 and xi = x2 when x ≥ x2. This function is
shown in Figure 4 for ξ = −0.2, xp = 0.5, σp = 0.1, ρ1 = 0.1, and ρ2 = 0.2.

x1,2 = xp + σp

√
2 ln 2

(

ξ√
ξ + 1

∓ 1

)

(10)

The parameters xp and σp are the peak position and width (FWHM/2.35), and ξ is an asymmetry
parameter. The numerical integral of the Bukin function does not always converge, so you should
check to make sure that the PDF is correctly evaluated (by plotting the fitted result) if you use
this PFD.

The following code snippet will make a bukin pdf with the same PDF parameters as used in
Figure 4.

8

-1 -0.5 0 0.5 1

E
nt

ri
es

0.02

0.04

0.06

-1 -0.5 0 0.5 1

E
nt

ri
es

0.02

0.04

0.06

Figure 4: An example of the Bukin PDF shape.

RooRealVar x(‘‘x’’, ‘‘’’, 0.0, 1.0);

AFitBukin bukin(x, ‘‘bpdf’’);

RooAbsPdf * bukinPDF = bukin.getPdf();

2.5 Chebychev Polynomial

Chebychev Polynomial distribution: The Cheby shape is given by

P(x, pi) = 1 +
n
∑

i=1

piTi(x), (11)

where the parameters pi are coefficints of the functions Ti, and the Ti are define elsewhere3.
The RooFit user guide advises that one should use a Chebychev Polynomial over a polynomial
wherever possible, as the coefficients of a Chebychev Polynomial have smaller correlations than
the coefficients of a polynomial. The corollory of this is that fits behave better when using a
Chebychev Polynomial than when using the equivalent polynomial. The following code snippet
will make a Chebychev Polynomial of order 3:

Int t iOrder = 3;

AFitCheby chebybld(x, ‘‘pdf’’, iOrder);

RooAbsPdf * cheby = chebybld.getPdf();

3For example see: http://mathworld.wolfram.com/ChebyshevPolynomialoftheFirstKind.html

9

2.6 Crystal Ball

Crystal Ball (CB) distribution: The CB shape is a Gaussian with an exponential tail as defined
in [7]. The functional form implemented in RooFit is given by

P(m;m0, σ, α, n) =
1

N
× e−(m−m0)2/(2σ2) ;m > m0 − ασ, (12)

=
1

N
× (n/α)n exp(−α2/2)

((m0 −m)/σ + n/α− α)n ;m ≤ m0 − ασ, (13)

where we use the abbreviation: alpha = α, n = n, Mean = m0 and resn = σ.

This PDF has a type ’cbshape’ when using the AFitPdfFactory (see below). The following is
an example of the code necessary to make a Crystal Ball PDF in AFit, and Figure 5 shows the
corresponding PDF distribution.

RooRealVar x(‘‘x’’, ‘‘’’, -5.0, 5.0);

// The Crystal Ball PDF

AFitCBShape cbshape(x, ‘‘mypdfname’’);

RooAbsPdf * cbPDF = cbshape.getPdf();

-5 -4 -3 -2 -1 0 1 2 3 4 5

P
ro

je
ct

io
n

 o
f

C
B

S
h

ap
e

P
D

F

0.005

0.01

0.015

0.02

0.025

0.03

-5 -4 -3 -2 -1 0 1 2 3 4 5

P
ro

je
ct

io
n

 o
f

C
B

S
h

ap
e

P
D

F

0.005

0.01

0.015

0.02

0.025

0.03

A RooPlot of ""

Figure 5: An example of the Crystal Ball PDF shape.

10

2.7 Decay Models

2.7.1 The Decay Model

The AFitDecay class is the wrapper for the RooDecay class. This is used to model lifetime decay
of non-mixing particles as a function of ∆t. The functional form of this PDF is

P(∆t, σ(∆t)) =
e−|∆t|/τ

τ
⊕R(∆t, σ(∆t)).

where τ is the lifetime of the particle. The resolution function R is convolved with the physical
time-dependence as indicated. Figure 6 illustrates the shape of this PDF.

 t∆
−10 −8 −6 −4 −2 0 2 4 6 8 10

E
ve

nt
s

/ (
 0

.2
)

0

500

1000

1500

2000

2500

3000

3500

 t"∆A RooPlot of "

 t∆
−10 −8 −6 −4 −2 0 2 4 6 8 10

E
ve

nt
s

/ (
 0

.2
)

0

500

1000

1500

2000

2500

3000

3500

 t"∆A RooPlot of "

Figure 6: An example of the Decay PDF shape.

NOTE: When using this model, it is imperative that the RooAbsPdf of the resolu-
tion function you intend to use is instantiated before the Decay model’s RooAbsPdf.

2.7.2 The BDecay Model

The AFitBDecay class is the wrapper for the RooBDecay class. This is used to model lifetime
decay of non-mixing particles as a function of ∆t. The functional form of this PDF is the most
general description of B decay time distribution with effects of CP violation, mixing and life
time differences. Dilution is not explicitly included in this pdf. See the RooFit documentation
for more information.

NOTE: When using this model, it is imperative that the RooAbsPdf of the reso-
lution function you intend to use is instantiated before the BCPGenDecay model’s
RooAbsPdf.

11

2.7.3 The BCPGenDecay Model

The AFitBCPGenDecay class is the wrapper for the time-dependent CP asymmetry RooBCPGenDecay

class. This is used to measure CP asymmetries in Υ(4S) → B0B
0

decays at BaBar. Section 6.5
illustrates how to use this class. The functional form of this PDF is

P±(∆t, σ(∆t)) =
e−|∆t|/τB0

4τB0

((1 ∓ ∆ω) ± (1 − 2ω) × [Sf sin(∆md∆t) − Cf cos(∆md∆t)])

⊕R(∆t, σ(∆t)).

where P+(−) describes B0 (B
0
) tagged events, τB0 is the B0 lifetime, ω is the mistag probability,

∆ω is the mistag probability difference between B0 and B
0

tagged events, ∆md is the B0 −B
0

mixing frequency, and S and C are the CP asymmetry parameters. The resolution function R
is convolved with the physical time-dependence as indicated.

It is possible to blind S and C by setting the blindingState to blind, ensuring that the blind-
StringS and blindStringC variables have been set appropriately.

NOTE: When using this model, it is imperative that the RooAbsPdf of the reso-
lution function you intend to use is instantiated before the BCPGenDecay model’s
RooAbsPdf.

2.8 Disappearance PDF

The neutrino disappearance probability is given by

P(E; θ,A,∆m2, L) = 1 − sin2(2θ) sin2(A∆m2L/E), (14)

where θ is the mixing angle, A ≃ 1.267 given current data, L is the baseline of the neutrino
experiment (km), and E is the neutrino energy (GeV). The class AFitDisapperance is the
implementation of this PDF. The corresponding distribution produced by this class is shown
in Figure 7 for L = 265, A = 1.267, and ∆m2 = 0.0024. The observed PDF for low neutrino
energy (< 0.1 GeV) is an artifact of the granularity of the RooCurve used to create the plot.
The numerical PDF is reproduced correctly.

2.9 Exponential

The exponential function defined as

P(x; γ) = eγx, (15)

where γ is the slope of the exponential. This PDF has a type ’exponential’ when using the
AFitPdfFactory. If the category fitLifetime has the value ’true’, then the slope of the exponential
is replaced by −1/γ, where γ is fitted as a lifetime and the PDF becomes:

P(x; γ) = e−x/τ , (16)

12

 energyν
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

je
ct

io
n

of
 D

is
ap

pe
ar

an
ce

 P
D

F

0

0.005

0.01

0.015

0.02

0.025

0.03

 energyν
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

je
ct

io
n

of
 D

is
ap

pe
ar

an
ce

 P
D

F

0

0.005

0.01

0.015

0.02

0.025

0.03

Figure 7: An example of the neutrino disappearance PDF shape. The irregular oscillation
amplitude visible for low ν energy is a plotting artifact.

-5 -4 -3 -2 -1 0 1 2 3 4 5

P
ro

je
ct

io
n

 o
f

E
xp

o
n

en
ti

al
 P

D
F

0.02

0.04

0.06

0.08

0.1

-5 -4 -3 -2 -1 0 1 2 3 4 5

P
ro

je
ct

io
n

 o
f

E
xp

o
n

en
ti

al
 P

D
F

0.02

0.04

0.06

0.08

0.1

A RooPlot of ""

Figure 8: An example of the exponential PDF shape.

The fitLifetime category has the name < pdfname > < variablename > fitLifetime. This
option is useful when trying to determine the lifetime of exponentially decaying sample of data.
Figure 8 shows an example of the exponential function PDF.

13

The following code snippet will make an exponential PDF with a decay constant of 1.0.

RooRealVar x(‘‘x’’, ‘‘’’, 0.0, 20.0);

// The Exponential PDF

AFitExponential expshape(x, ‘‘mypdfname’’);

RooAbsPdf * expPDF = expshape.getPdf();

2.10 Flatte Function

An example of the Flatte function distribution is shown in Fig. 9. More details will be added
in due course.

x
0 2 4 6 8 10

E
nt

ri
es

0

0.01

0.02

x
0 2 4 6 8 10

E
nt

ri
es

0

0.01

0.02

Figure 9: An example of the Flatte PDF shape.

The following code snippet is an illustration of how to construct an AFitFlatte pdf.

RooRealVar x(‘‘x’’, ‘‘’’, 0, 10.0);

AFitFlatte flatteshape(x, ‘‘mypdfname’’);

RooAbsPdf * flattePDF = flatteshape.getPdf();

14

2.11 Gaussian

This is defined by a mean and width (µ and σ) and is given by

P(x ;µ, σ) =
1

σ
√

2π
exp

(

−[x− µ]2/2σ2
)

(17)

The Gaussian function implemented in AFit, allows you to choose to have different widths above
and below the mean value.

This PDF has a type ’gaussian’ when using the AFitPdfFactory, and Figure 10 shows an example
of the Gaussian PDF shape.

-5 -4 -3 -2 -1 0 1 2 3 4 5

P
ro

je
ct

io
n

 o
f

G
au

ss
ia

n
 P

D
F

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

-5 -4 -3 -2 -1 0 1 2 3 4 5

P
ro

je
ct

io
n

 o
f

G
au

ss
ia

n
 P

D
F

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

A RooPlot of ""

Figure 10: An example of the Gaussian PDF shape.

The following code snippet will make a Gaussian PDF with a mean of 0.0 and a width of 1.0.

RooRealVar x(‘‘x’’, ‘‘’’, -4.0, 4.0);

// The Gaussian PDF

AFitGaussian gausshape(x, ‘‘mypdfname’’);

RooAbsPdf * gausPDF = gausshape.getPdf();

2.12 Generic PDF with functional form f(x)

This PDF has type ’generic’ when using the AFitPdfFactory. The functional form of a Generic
PDF is defined by a string input into the constructor of the class. For example, in order to make
a generic PDF for the function f(x) = x2 + x+ 1, one can do the following:

15

RooRealVar x(‘‘x’’, ‘‘’’, -5.0, 5.0);

AFitGeneric genshape(x, ‘‘mypdfname’’, ‘‘@0*@0+@0+1’’);

RooAbsPdf * genericPdf = genshape.getPdf();

The corresponding shape of this generic PDF example is shown in Figure 11.

-4 -2 0 2 4

E
nt

ri
es

0.01

0.02

0.03

-4 -2 0 2 4

E
nt

ri
es

0.01

0.02

0.03

Figure 11: An example of the generic PDF shape for the function f(x) = x2 + x+ 1.

2.13 Gounaris-Sakurai lineshape PDF

This is similar in shape to the relativistic Breit-Wigner described in Sec. 2.3.2. Gounaris-Sakurai
(GS) distribution is a model of the P-wave ππ scattering amplitude [8]: The parameters mean
and width of the resonance are m0 and Γ0. The GS PDF used is for |A|2 and is defined as

GS(m ;m0,Γ0, J, R) =
(1 + d.Γ0/m0)

2

(m2 −m2
0 − f(m2))2 +m2

0Γ
2(m)

, (18)

where

f(s) = Γ0
m2

0

k3(m0)

[

k2(m)[h(s) − h(m2
0)] + (m2

0 − s)k2(m0)dh/ds|s=m2
0

]

, (19)

h(s) =
2k(m)

π
√

(s)
ln

(√
s+ 2k(m)

2mπ

)

, (20)

dh/ds|s=m2
0

= h(m2
0)
[

(8k2(m0))
−1 − (2m2

0)
−1
]

+ (2πm2
0)

−1, (21)

16

d =
3m2

π

πk2(m0)
ln

(

m0 + 2k(m0)

2mπ

)

+
m0

2πk(m0)
− m2

πm0

πk3(m0)
, (22)

Γ(m) = Γ0
m0

m

(

k(m)

k(m0)

)2J+1

, (23)

(24)

Γ(m) is the mass dependent width of Eq. 23, s = m2, and k(
√
s) is defined in Eq. 5.

2.14 Helicity PDF

This PDF has type ’helicity’ when using the AFitPdfFactory. The functional form of the helicity
is depends on the value of the type string specified prior to building the PDF and this PDF
is implemented in order to study angular correlations in components of type vvpolarisation.
For the helicity angle θ, the longitudinally polarised part of the vvpolarisation component
should have a cos θ distribution of the form xsqr, and the transversely polarised part of the
vvpolarisation component should have a cos θ distribution of the form 1-xsqr. In practice
any PDF of this form should be modulated by an acceptance function.

-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1

P
ro

je
ct

io
n

 o
f

0

0.005

0.01

0.015

0.02

0.025

0.03

A RooPlot of ""

-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1

P
ro

je
ct

io
n

 o
f

0

0.005

0.01

0.015

0.02

0.025

0.03

A RooPlot of ""

Figure 12: An example of the helicity PDF shape for (dashed) longitudinal and (solid) transverse
polarisation forms.

The following code snippet will make a helicity PDF shape with an xsqr distribution:

AFitHelicity hbld(x, ‘‘pdf’’);

RooAbsPdf * h = hbld.getPdf();

17

2.15 Histogram (non-parametric PDF)

It is possible to construct a non-parametric PDF based on an input histogram using the RooHist-
Pdf class. The AFit wrapper of this class is AFitHist. The value of the PDF for a given value
of x corresponds to the normalised bin content of the histogram used to define the PDF (unless
interpolation is used between adjacent bins).

In order to build a Histogram PDF for a discriminating variable x, you need to enter the following

AFitHist pdfbld(x, ‘‘pdf’’);

pdfbld.datafile.setVal(‘‘myfile.root’’);

pdfbld.histname.setVal(‘‘hist’’);

pdfbld.order.setVal(2);

RooAbsPdf * pdf = pdfbld.getPdf();

where the histogram needed to define the PDF is called hist and can be found in the ROOT file
myfile.root. An assertion is made if the specified histogram does not exist. Figure 13 shows
an example of this type of PDF given an input histogram. The data in the histogram are the
result of randomly filling the histogram according to a Gaussian distribution with a mean of 0.5
and width of 0.1.

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ve

nt
s

/ (
 0

.0
5

)

0

20

40

60

80

100

120

A RooPlot of "x"

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ve

nt
s

/ (
 0

.0
5

)

0

20

40

60

80

100

120

A RooPlot of "x"

Figure 13: An example of the Histogram PDF shape (solid), compared with the original data
(points).

18

2.16 KEYS (non-parametric PDF)

The KEYS algorithm (Kernal Estimation of Your Shapes) [9] can be used to obtain a smoothed
non-parametric PDF representation of a sample of data or Monte Carlo simulated data. The use
of the KEYS PDF is similar to that of the histogram PDF described above. The main difference
is that fits using a KEYS pdf will be a lot slower than those using a histogram PDF. The reason
for this is that a Gaussian kernel is computed for each event in the data set used to construct
a KEYS PDF, and the PDF is evaluated at each point by computing a sum over all events. In
practice it is usually beneficial to compute a KEYS PDF once and then store the output shape
as a histogram for use in all later fitting and validations.

Figure 14 shows an example of this type of PDF given an input histogram. The data in the
figure are the result of randomly filling the histogram according to a Gaussian distribution with
a mean of 0.5 and width of 0.1.

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ve

nt
s

/ (
 0

.0
4

)

0

10

20

30

40

50

60

70

80

90

A RooPlot of "x"

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ve

nt
s

/ (
 0

.0
4

)

0

10

20

30

40

50

60

70

80

90

A RooPlot of "x"

Figure 14: An example of the KEYS PDF shape (solid), compared with the original data
(points).

In order to build a KEYS PDF for a discriminating variable x, you need to enter the following

AFitKeys pdfbld(x, ‘‘pdf’’);

pdfbld.setParameter(‘‘file’’, ‘‘myfile.root’’);

pdfbld.setParameter(‘‘tree’’, ‘‘treename’’);

pdfbld.setParameter(‘‘rho’’,1);

pdfbld.setParameter(‘‘mirror’’, ‘‘NoMirror’’);

RooAbsPdf * pdf = pdfbld.getPdf();

where datafile sets the ROOT file containing the TTree treename used to construct the PDF, ρ

19

is a smoothing parameter, and mirror is a RooCategory that defines how edge effects are dealt
with by RooKeysPdf. The allowed options for mirror are: NoMirror, MirrorLeft, MirrorRight,
MirrorBoth, MirrorAsymLeft, MirrorAsymLeftRight, MirrorAsymRight, MirrorLeftAsymRight,
MirrorAsymBoth. The default is ρ = 1 and mirror set to NoMirror.

2.17 Landau

This PDF has a type ’landau’ when using the AFitPdfFactory, and Figure 15 shows an example
of the Landau PDF shape. The functional form of the Landau distribution is given in Ref. [10]
and this is often used to describe the fluctuations in energy loss of a charged particle passing
through a thin layer of material.

-5 -4 -3 -2 -1 0 1 2 3 4 5

P
ro

je
ct

io
n

 o
f

L
an

d
au

 P
D

F

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

-5 -4 -3 -2 -1 0 1 2 3 4 5

P
ro

je
ct

io
n

 o
f

L
an

d
au

 P
D

F

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

A RooPlot of ""

Figure 15: An example of the Landau PDF shape.

The following code snippet will construct a Landau PDF with a mean of 0.0, and a width of 1.0.

AFitLandau landaubld(x, ‘‘pdf’’);

RooAbsPdf * landau = landaubld.getPdf();

2.18 Novosibirsk

This PDF has a type ’novosibirsk’ when using the AFitPdfFactory, and Figure 16 shows an
example of the Novosibirsk PDF shape. The functional form of the Novosibirsk function is

P (x) = e−0.5(ln qy)2/Λ2+Λ2

, (25)

20

qy = 1 + Λ(x− x0)/σ × sinh(Λ
√

ln 4)

Λ
√

ln 4
, (26)

x0 is the peak position, σ is the width of the peak, and Λ is a parameter describing the tail of
the distribution.

-5 -4 -3 -2 -1 0 1 2 3 4 5

P
ro

je
ct

io
n

 o
f

N
o

vo
si

b
ir

sk
 S

h
ap

e
P

D
F

0.005

0.01

0.015

0.02

0.025

0.03

0.035

-5 -4 -3 -2 -1 0 1 2 3 4 5

P
ro

je
ct

io
n

 o
f

N
o

vo
si

b
ir

sk
 S

h
ap

e
P

D
F

0.005

0.01

0.015

0.02

0.025

0.03

0.035

A RooPlot of ""

Figure 16: An example of the Novosibirsk PDF shape.

The following code snippet will construct a Novosibirsk PDF with a mean of 0.0, a width of 1.0,
and a tail parameter of 1.0.

AFitNovosibirskShape novbld(x, ‘‘pdf’’);

RooAbsPdf * nov = novbld.getPdf();

2.19 Polynomial

The polynomial is defined as

P(x; pi) =
N
∑

i=1

pix
i, (27)

where the pi are coefficients. This PDF has a type ’polynomial’ when using the AFitPdfFactory,
and Figure 17 shows an example of the polynomial PDF shape.

The following code snippet will construct a cubic polynomial function (this is specified by the
iOrder argument). By default the polynomial parameters are set to 0.0, so you need to modify
the parameters either via a configuration file, or by accessing the RooRealVar’s directly in order
to make a non-trivial shape.

21

-5 -4 -3 -2 -1 0 1 2 3 4 5

P
ro

je
ct

io
n

 o
f

P
o

ly
n

o
m

ia
l P

D
F

0.002

0.004

0.006

0.008

0.01

-5 -4 -3 -2 -1 0 1 2 3 4 5

P
ro

je
ct

io
n

 o
f

P
o

ly
n

o
m

ia
l P

D
F

0.002

0.004

0.006

0.008

0.01

A RooPlot of ""

Figure 17: An example of the polynomial PDF shape.

Int t iOrder = 3;

AFitPoly polybld(x, ‘‘pdf’’, iOrder);

RooAbsPdf * poly = polybld.getPdf();

2.20 Parametric Step Function

The Parametric Step Function (PSF) is a PDF where data are binned in one dimension, and
the parameters of the PDF are the fractions of probability in each bin. As binning can be
non-uniform by definition, the fitted fractions are, in general, not the heights of each bin when
plotted, but also depend on the bin width. Figure 18 shows an example of using the PSF pdf.

The PSF pdf has N bins, so there are N coefficients (“pdfname PSFcoef i”) and N+1 bin bound-
aries (“pdfname PSFlimit i”) that have to be set in order to make this PDF. The following code
snippet will construct a parametric step function PDF similar to the one shown in the Figure.

22

Discriminating Variable
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

je
ct

io
n

of
 F

it
M

as
te

r
M

od
el

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

A RooPlot of "Discriminating Variable"

Discriminating Variable
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

je
ct

io
n

of
 F

it
M

as
te

r
M

od
el

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

A RooPlot of "Discriminating Variable"

Figure 18: An example of the Parametric Step Function shape.

// Instantiate the discriminating variable

RooRealVar x("x", "", 0.0, 1.0);

// Set the relative weights of each bin

RooRealVar n0("n0", "", 0.1);

RooRealVar n1("n1", "", 0.2);

RooRealVar n2("n2", "", 0.3);

RooRealVar n3("n3", "", 0.4);

RooRealVar n4("n4", "", 0.1);

RooArgList coefList;

coefList.add(n0);

coefList.add(n1);

coefList.add(n2);

coefList.add(n3);

coefList.add(n4);

// Set the bin boundaries - there are N+1 boundaries

// Note that the first and last boundary match the limits

// of the discriminating variable x.

TArrayD limits;

limits.Set(6);

limits[0] = 0.0;

limits[1] = 0.5;

limits[2] = 0.6;

limits[3] = 0.7;

limits[4] = 0.9;

limits[5] = 1.0;

RooParametricStepFunction pdf("pdf", "ParametricStepFunction PDF",

x, coefList, limits, 5);

23

2.21 Resolution

The resolution function implemented in AFit is a triple Gaussian function of the form

P(x; pi) = fcoreGcore(x, σ(x), µcore, σcore) + ftailGtail(x, σ(x), µtail, σtail)

+(1 − fcore − ftail)Goutlier(x, µoutlier, σoutlier) (28)

where x is the discriminating variable, σ(x) is the uncertainty on the discriminating variable,
and the µi and σi are the means and widths of the ith Gaussian, where i = core, tail, outlier. It
is possible to multiply the mean and with of the core and tail Gaussians by σ(x), however the
default behaviour is not to do this.

In order to scale the mean and width parameters by the error on x, the following parameters
should be set to yes

scaleCoreMean

scaleTailMean

scaleCoreWidth

scaleTailWidth

An example of the resolution function PDF for the proper-time difference distribution (∆t) in
BaBar is shown in Figure 19 for B0 → π+π− Monte Carlo simulated data.

dt
−10 −5 0 5 10

E
nt

rie
s

0

200

400

600

800

dt
−10 −5 0 5 10

E
nt

rie
s

0

200

400

600

800

dt
−10 −5 0 5 10

E
nt

rie
s

1

10

210

dt
−10 −5 0 5 10

E
nt

rie
s

1

10

210

Figure 19: An example of the resolution function PDF shape. The figure on the right shows the
same plot on a log scale.

A resolution function PDF can be constructed using the following steps

24

// the discriminating variable is deltat and the conditional variable is

// is the error on deltat: deltatErr

RooRealVar deltat(‘‘reso dt’’, ‘‘dt’’, -10.0, 10.0);

RooRealVar deltatErr(‘‘deltaterr’’, ‘‘sdt’’, 1.2, 0.0, 2.50);

AFitResolution resoBld(&deltat, &deltatErr, ‘‘Reso’’);

RooAbsPdf * pdf = resoBld.getPdf();

and there is a detailed example of how to use the AFitResolution class in Section 6.3

2.22 Sigmoid

This PDF has a type ’sigmoid’ when using the AFitPdfFactory. The function implemented is

P(x; a, b) =
1

1 + ea(x+b)
, (29)

where the coefficients a and b are an exponent scale factor, and x-offset respectively. Figure 20
shows an example of the Sigmoid PDF shape.

-5 -4 -3 -2 -1 0 1 2 3 4 5

P
ro

je
ct

io
n

 o
f

S
ig

m
o

id
 P

D
F

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

-5 -4 -3 -2 -1 0 1 2 3 4 5

P
ro

je
ct

io
n

 o
f

S
ig

m
o

id
 P

D
F

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

A RooPlot of ""

Figure 20: An example of the sigmoid PDF shape.

The following code snippet will make a sigmoid function PDF with a = 1.0, and b = 0.0.

AFitSigmoid sigbld(x, ‘‘pdf’’);

RooAbsPdf * sigmoid = sigbld.getPdf();

25

2.23 Step Function

It can be useful to impose a sharp cut-off to a PDF. In such cases it is useful use a step function
PDF where

P(x) = 1, (30)

between xa and xb, and P(x) = 0 elsewhere. Similarly it can also be useful to veto a region of
x using the complement of the step function. Figure 21 shows an example of the step and veto
functions where xa = 2 and xb = 3.

Discriminating Variable
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

P
ro

je
ct

io
n

of

0

0.01

0.02

0.03

0.04

0.05

Discriminating Variable
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

P
ro

je
ct

io
n

of

0

0.01

0.02

0.03

0.04

0.05

Discriminating Variable
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

P
ro

je
ct

io
n

of

0

0.002

0.004

0.006

0.008

0.01

0.012

A RooPlot of "Discriminating Variable"

Discriminating Variable
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

P
ro

je
ct

io
n

of

0

0.002

0.004

0.006

0.008

0.01

0.012

A RooPlot of "Discriminating Variable"

Figure 21: An example of (left) a step and (right) a veto function.

The following code snippet will make a step function PDF with a step between x = 0.0, and
x = 1.0.

RooRealVar x(‘‘x’’, ‘‘’’, -1.0, 2.0);

AFitStepFunction stepbld(x, ‘‘pdf’’);

RooAbsPdf * step = stepbld.getPdf();

2.24 Voigtian

This PDF has a type ’voigtian’ when using the AFitPdfFactory. Figure 22 shows an example
of the Voigtian PDF shape. This function is defined as the convolution of a Gaussian and a
Breit-Wigner distribution. It is useful when trying to describe mass peaks with the particle
width Γ is comparable to the detector resolution. The functional form of this PDF is

P(x;m,Γ, σ) =
1

N

+∞
∫

−∞

G(x′; 0, σ)BW (x− x′;m,Γ)dx′. (31)

where G is the Gaussian and BW is the Breit-Wigner.

The following code snippet will make a Voigtian PDF shape with a mean of 0.0, a width of 1.0,
and a σ of 1.0:

26

-5 -4 -3 -2 -1 0 1 2 3 4 5

P
ro

je
ct

io
n

 o
f

V
o

ig
ti

an
 P

D
F

0.005

0.01

0.015

0.02

0.025

0.03

-5 -4 -3 -2 -1 0 1 2 3 4 5

P
ro

je
ct

io
n

 o
f

V
o

ig
ti

an
 P

D
F

0.005

0.01

0.015

0.02

0.025

0.03

A RooPlot of ""

Figure 22: An example of the Voigtian PDF shape.

AFitVoigtianShape vbld(x, ‘‘pdf’’);

RooAbsPdf * v = vbld.getPdf();

2.25 Composite Add PDF

Composite PDFs can be constructed from their individual components using an AFitAddPdf.
Each component is added with a relative fraction as follows

P(x; fi) = f1PDF1(x) + f2PDF2(x) + . . . (1 − f1 − f2 . . .− fN−1)PDFN (x). (32)

This PDF has a type ’add:x,y,...’ when using the AFitPdfFactory. The comma separated
variables after the colon specify the different PDF types to be added together.

2.26 Composite Multiply PDF

This PDF has a type ’multiply’ followed by a colon ’:’ and a comma separated list of PDF types
to instantiate and multiply together. The functional form of this PDF is given by

P (x) = P1(x) ∗ P2(x) ∗ . . . ∗ Pn(x) (33)

The multiplication is implemented by using a RooGenericPDF, and the limit of the number of
PDFs that can be multiplied together is governed by the computing resources. Figure 23 shows
a helicity PDF multiplied by a polynomial.

27

x
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

N
or

m
al

is
ed

 P
D

F

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

x
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

N
or

m
al

is
ed

 P
D

F

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

x
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

N
or

m
al

is
ed

 P
D

F

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

x
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

N
or

m
al

is
ed

 P
D

F

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Figure 23: An example of the Multiply PDF shape (solid) for a helicity distribution (dotted),
multiplied by a polynomial (dashed).

2.27 Multi-dimensional PDFs

Multi-dimensional PDFs can be constructed from the product of their individual components
using an AFitProdPdf:

P(x) = PDF1(x1) × PDF2(x2) × . . .× PDFN (xN). (34)

Multidimensional PDFs can be created using the AFitPdfFactory member function makePdf(TString

name, RooArgList &discVarList), where the first argument is the name of the PDF, and the
second argument is a RooArgList of discriminating variables.

2.28 PDF summary

Table 1 summarises the different types of PDF available in AFit. This table shows the name of
the function, the abbreviation of the function name that is used in the AFitPdfFactory, and the
list of parameter names required by the pdf.

28

Table 1: The different types of PDF available in AFit. ‡denotes a conditional PDF that can be
made using the PDF factory method makeConditionalPdf.

PDF Pdf Factory Label Variable Names

Argus argus endpt, xi, power
Breit-Wigner breitwigner m0, Gamma
Relativistic Breit-Wigner relbreitwigner mass, width, radius, spin, mass a, mass b
Bukin bukin Xp, sigp, xi, rho1, rho2
Chebychev Polynomial chebyN pi
Crystal Ball cbshape mean, width, alpha, n
Decay decay tau
BCPDecay cpdecay tau, dm, S, C, avgMistag, delMistag, mu
BDecay bdecay tau, dm, f0, f1, f2, f3, dgamma
Disappearance disappearance theta, amp, L, deltamsqr
Exponential exponential constant
Gaussian gaussian mean, width
Asymmetric Gaussian agaussian mean, widthL, widthR
Generic PDF generic . . .
Gounaris-Sakurai gounarissakurai mass, width, radius, spin, mass a, mass b
Helicity helicity . . .
Histogram 1dhist . . .
KEYS 1dkeys . . .
Landau landau mean, sigma
Novosibirsk novosibirsk peak, width, tail
Polynomial polyN pi
PSF psf PSFcoef N, PSFlimit N
Resolution‡ resolution sigMeani, sigSigi, coreFrac, tailFrac

scaleCoreMean, scaleCoreWidth, scaleTailMean,
scaleTailWidth, useTruthModel

Sigmoid sigmoid a, b
Step/Veto step limits, veto
Voigtian voigtian mean, width, sigma, Algorithm
Composite Add PDF add:x,y,...
Composite Multiply PDF multiply:x,y,...
Multi-dimensional PDFs − −

29

3 Fit Components

A fit component is a multi-dimensional PDF defined for the set of variables x. The types of fit
component can be built are listed below and summarised in Table 2.

3.1 The default fit component

The default fit component is a product of one dimensional PDFs which can be expressed as:

PDF (x) = PDF1(x1) × PDF2(x2) × . . .× PDFN (xN). (35)

The configuration file excerpt for a default component looks like:

[signal]

signal x type = gaussian

signal y type = gaussian

signal q type = gaussian

where the term in square brackets is the component name. This is followed by a list of variables
with the naming convention of the component name, followed by the discriminating variable
name followed by ’ type’. The value assigned to this variable has to be one of the PDF types
listed in Table 1.

3.2 Scalar to Vector Vector decays (vvpolarisation)

The decay of a scalar particle to two vector particles results in the final state being a superpo-
sition of three amplitudes. One of these corresponds to the longitudinal polarisation, and the
other two are transverse polarisations. In the vvpolarisation component model, the longitudinal
and transverse polarisations are combined by the fraction of longitudinally polarised events fL.
In order to use the physical value of fL in a fit, one has to specify the reconstruction efficiency
for the longitudinal and transverse events. So the PDF is given by

P(x) = feff
L PL(x) + (1 − feff

L)PT (x). (36)

where PL(x) is the PDF for the longitudinal polarisation, PT (x) is the PDF for the transverse

polarisation, and feff
L is the observed fractional difference between the two polarisations. The

effective parameter feff
L is related to the physical parameter fL via

feff
L =

fL

(1 − fL)ǫT /ǫL + fL
(37)

where ǫL and ǫT are the efficiencies for the longitudinal and transverse polarisations.

The configuration file excerpt for a vvpolarisation component looks like:

30

Table 2: The different types of fit component available.

Component Name Description

default A product of one dimensional PDFs in x
vvpolarisation PDFs for longitudinal and transfers components coupled by fL

composite a weighted sum of components

[vvsignal]

vvsignal polarisationfrac = 1.0 +/- 0.1 L(0.0 -1.0)

vvsignal effLong = 0.30 C

vvsignal effTran = 0.40 C

[vvsignal long]

vvsignal long x type = gaussian

vvsignal long y type = gaussian

vvsignal long q type = landau

[vvsignal tran]

vvsignal tran x type = gaussian

vvsignal tran y type = gaussian

vvsignal tran q type = landau

where the term in square brackets is the component name. For the vvsignal component, the
only parameters that need to be configured are the value of fL which is given by vvsignal polarisationfrac,
and the efficiencies for the longitudinal and transverse polarisations (given by vvsignal effLong

and vvsignal effTran, respectively) in this example. The longitudinal and transverse polarisa-
tions are identified with the other two component names. Each of these polarisations is modelled
by a default PDF type as described above.

3.3 Composite component model (composite)

This component model is the sum of several indivudual components, added with a given weight-
ing. The total pdf can be written in terms of each of the components Ci as:

PDF (x) = (1 − f1 − . . .− fn)C0(x) + f1C1(x) + . . .+ fnCn(x). (38)

where the fi are the fractions of the components with i from 1 through to n. The fraction of
the the zeroth component is given by one minus the sum of the fi.

4 Building a Fit model

All applications in AFit start from a fit model that is constructed by the AFitMaster class.
This class is responsible for reading a configuration file that specifies the lists of discriminating

31

variables, and fit components, as well as the individual PDF types for each discriminating
variable used in every fit component. Once this has been done, the fit model will be constructed.
The rest of this section describes additional functionality provided by this class. Several examples
are described in Section 6.

4.1 The makePdf function

The makePdf member function of AFitMaster is used to read in the configuration file specified
in the constructor, and build a PDF according to the configuration.

4.2 The makeSimPdf function

The makeSimPdf member function of AFitMaster is used to read in the configuration file spec-
ified in the constructor, and build a PDF according to the configuration. The pdf constructed
using makePdf is split according to rules specified for one or more RooCategory variables. Ex-
amples of PDFs made using this function include time-dependent CP asymmetry measurement
PDFs where the PDF is split according to physics flavour tag categories. Section 6.4 describes
an example of how to make a model that is split by several categories.

4.3 The makeConditionalPdf function

The makeConditionalPdf member function of AFitMaster is used to read in the configuration
file specified in the constructor, and build a conditional PDF according to the configuration.

4.4 The fitParameters function

The fitParameters member function of AFitMaster, reads in reference data specified in the
configuration file for a given fit component, and fits PDFs to the reference data for that fit
component. The data files to use when fitting parameters are specified in the configuration file
block [PDF Param Files]. The following example shows a signal data file being specified as an
ascii file called signal.txt, with the discriminating variables as uncorrelated. The keyword ’data’
in the comma separated list is the name of the data to be read (so this is a dummy variable for
an ascii file).

[PDF Param Files]

signal referencedata = signal.txt,ascii,data,uncorrelated

If discriminating variables in the fit are specified as uncorrelated in the configuration file, then
the PDF parameters for each discriminating variable will be fitted separately for a fit component.
Otherwise all parameters for all PDFs in a component will be fitted simultaneously.

32

When finished fitting, the a new configuration file will be written to the out stream specified
in the fitParameters member function call. The following code snippet illustrates how to use
this function.

AFitMaster master(‘‘mydatacard.txt’’);

RooAbsPdf * pdf = master.getPdf();

ofstream out (‘‘outputdatacard.txt’’);

master.fitParameters(out);

out.close();

Note: in order to use this function, the data card used in the AFitMaster constructor should
fully specify the PDF, taking note of which shape parameters need to be varied and which are
to be held constant. If you need to create a data card before fitting the data, you can use the
writeDataCard function described in Section 4.6 to obtain a template for modification.

4.5 The persist function

This function will Write out the following

• A list of the discriminating variables used in the fit model.

• A list of the component types used in the fit model.

• A list of the component coefficients used in the fit model.

• A list of the options specified in the [FitConfiguration] block.

• The fit results obtained when fitting the PDF shapes (these will be present only if the
fitOptions specified in the [FitConfiguration] block used contains ’r’).

to the file specified by ofileName. If this file exists, it will be overwritten, otherwise a new file
will be created. There is only one argument to this member function, and it is used as follows:

master.persist(‘‘myfile.root’’);

4.6 The writeDataCard function

When setting up a fit model there can be a very large number of fit parameters that need to
be defined in the configuration file (or data card) that describes your fit. The writeDataCard
function aims to simplify the process of writing a skeleton data card. If you are able to define
the variables that go into your fit, as well as the fit components (signal and backgrounds),
the component types, the yields4 and the functional forms of the distributions used for the

4Note that each category yield can be blinded using an independent blinding string and scale factor.

33

component PDFs, then one can write out a new data card that has all of the aforementioned
information included, in addition to the the PDF parameters that will need to be defined by the
fit model.

For example if you consider the 2D fit model of the effective mass MES and energy difference ∆E
of a B meson (See examples/testAFitProjectionPlot.cc and examples/mes de model.txt),
then it is sufficient to specify the following

[FitConfiguration]

// specify the variables to use in the fit

variables = bMes,bDeltaE

// specify the names of the signal and background components

components = signal,continuum,Bbg0

fitOptions = etrmh

// set the limits and initial values of the variables used

bMes = 5.2700 +/- 0 L(5.25 - 5.29) B(30)

bDeltaE = 0.0000 +/- 0 L(-0.3 - 0.3) B(30)

// set the component types

signal = default

continuum = default

Bbg0 = default

// give initial values for the yields of each component

signalYield = 500.00 +/- 10.000 L(-100 - 10000)

continuumYield = 2000.00 +/- 10.000 L(-100 - 10000)

Bbg0Yield = 50.000 +/- 10.000 L(-100 - 10000)

// define the shapes used for the signal MES and ∆E PDFs

[signal]

signal bMes type = gaussian

signal bDeltaE type = landau

// define the shapes used for background MES and ∆E PDFs

[continuum]

continuum bMes type = argus

continuum bDeltaE type = poly2

// define the shapes used for background MES and ∆E PDFs

[Bbg0]

Bbg0 bMes type = argus

Bbg0 bDeltaE type = poly2

With this information specified in a configuration file you can generate a configuration that

34

includes PDF parameters by running the following commands:

AFitMaster master(‘‘my model configuration.txt’’);

RooAbsPdf * pdf = master.getPdf();

master.writeDataCard(cout);

where cout can be replaced by any ostream object for example a text file you’ve just opened.

4.7 The fitData function

This member function is used in order to fit the data to the total PDF model build from the
AFitMaster. If the fitOptions variable in the configuration file’s [FitConfiguration] block
specifies ’r’, this function will return a pointer to a RooFitResult that should be non-zero.

4.8 Blinding yields

The fit yields for components are by default unblind. However AFit is written so that any of the
yields may be blinded using the appropriate syntax in the configuration file. Each yield has its
own blinding string, blinding state and a scale factor used to compute the blinding offset. For ex-
ample, if we consider the signal fit component, its yield has the name signalYield. The blinding
parameters associated with signalYield are signalYield BlindingType, signalYield BlindingString,
and signalYield BlindingScale. The possible values of the BlindingType are blind and un-
blind (all lowercase). The blinding string is any user defined string, and the scale is used to tune
the size of the random offset. The RooUnblindOffset class is used to implement blind yields in
AFit.

4.9 Replacing Variables In A PDF

Often we want to construct a complicated PDF where several shapes have a common parameter,
for example a kinematic endpoint in MES as described by an ARGUS PDF shape. The data
are all constrained by the same endpoint, and so in principle should have the same RooRealVar

parameter assigned as this common parameter for all components that are described by an
ARGUS PDF in the fit. Normally this will not be the case: each ARGUS PDF will have its
own endpoint.

It is possible to override this behaviour by substituting parameters when the PDF is being built.
The order in which this is done is important - the PDF you take the new parameter from must
have been built before the PDF you are currently trying to modify (so this has to appear earlier
in the list of components, or variables). If this is satisfied, then you can assign a parameter
substitution by adding the following line to the appropriate section describing your PDF in the
data card:

mypdfname variablesToReplace = oldVarA:newVarA,oldVarB:newVarB,...

35

where the comma separated list provides pairs of old variables that will be replaced by new ones.

4.10 Computing systematic uncertainties

The systematic uncertainties on a fit result from a constant parameter p in the likelihood
model is given by the shift on the nominal fitted value when p is varied by ±σ(p). The
computeSystematicError function within AFitMaster can be used to compute such an un-
certatinty. When this function is called, three fits to the data are performed (i) the nominal fit
(ii) a fit with p set to p+ σ(p), and (iii) a fit with p set to p− σ(p). The shifts in all parameters
allowed to vary in the fit are reported in a specified text file.

For example, using the rare B decay model one can compute the systematic uncertainty from a
generated toy Monte Carlo simulated data sample using the following

AFitMaster master(‘‘AFit/example/rareBdecay.txt’’);

RooAbsPdf * pdf = master.getPdf();

RooArgSet &varsToGen = master.getDiscVarSet();

AFitToy toy;

RooDataSet * data = toy.generateToySample(pdf, varsToGen, 1000, 0);

master.computeSystematicError(data, ‘‘continuum bMesxi’’, ‘‘testSyst.txt’’);

The output file from this test is the following:

Bbg0Yield = -76.775 +/- 305.881 systematic error shifts = +0 -0.251594

continuumYield = 915.797 +/- 171.32 systematic error shifts = +0 -0.192007

signalYield = 161.237 +/- 14.9639 systematic error shifts = +0.12581 -0.12946

from which one can read off the systematic uncertainty of interest from the last two columns
of data. If the systematic shift is one-sided (as in the case of Bbg0Yield and continuumYield

above) then the larger of the two shifts is taken as the systematic uncertainty, otherwise the
asymmetric error is reported. The output file is written in such a way that it can easily be
parsed by scripts.

5 Utilities

5.1 Statistical analysis

5.1.1 Pearson Correlation Coefficients

The Pearson correlation coefficient ρ = σx,y/σxσy between variables in a TTree can be computed
using the correlation member function of the AFitStatTools class. This function requires that

36

the branches of the TTree are of type Double t, and the correlation coefficients are calculated
for all possible combinations of a comma separated list of variables. For example, given a pointer
to the TTree tree, one can compute the correlations between the variables mass and energy

using

AFitStatTools st;

st.correlation(tree, ‘‘mass,energy’’);

or

AFitStatTools st;

st.pearsons correlation(tree, ‘‘mass,energy’’);

the output of this will look something like

Results from AFitStatTools::correlation for the variables

mass,energy

Correlation matrix follows:

1 -0.0157139

-0.0157139 1

where the order of the columns and rows is the same as the order of variables in the comma
separated list.

5.1.2 Spearmans Rank Correlation Coefficients

The matrix of Spearmans rank correlation coefficients rs can be calculated in a similar way using

AFitStatTools st;

st.correlation(tree, ‘‘mass,energy’’, kTRUE);

or

AFitStatTools st;

st.spearmans rank correlation(tree, ‘‘mass,energy’’);

where the correlation rs is given by

rs = 1 − 6
∑

i d
2
i

n(n2 − 1)
(39)

where n is the number of data points, the di are difference between the integer ranks of the ith

event for the two variables x and y and this quantity is summed over all events.

37

5.1.3 Miscellaneous

The AFitStatTools class has member functions that perform a number of different calculations,
including

• Binomial error

• χ2 sum

• χ2 probability

5.2 Projection Plots

The class AFitProjectionPlot can be used in order to make projections of a PDF on a RooPlot.
If a RooDataSet is provided, the data will be plotted on the RooPlot as well as the projection
over the PDF. This class can also be used in order to compute a pull plot from the difference
between data points and the PDF curve.

The following is an example of using this plot class to make a plot of a Gaussian PDF for the
variable x where a generated data set of 1000 events is plotted on the RooPlot in addition to
the pdf. Figure 24 shows the result of running this macro.

RooRealVar x(‘‘x’’, ‘‘’’, 0.0, -5, 5);

AFitPdfFactory fact;

AFitAbsPdfBuilder * bld = (AFitAbsPdfBuilder *)fact.makePdf(‘‘pdf’’,

‘‘gaussian’’, x);

RooAbsPdf * pdf = (RooAbsPdf*)bld->getPdf();

AFitProjectionPlot plotter;

RooDataSet * data = pdf->generate(RooArgSet(x), 1000);

RooPlot * frame = plotter.makePlot(x, data, pdf);

frame->Draw();

Section 6.3 describes an example that uses a conditional variable in the PDF. It is necessary to
provide prototype data sets for all conditional variables when projecting such a PDF.

5.2.1 Example: Enhancing the signal for a 2D fit model

If one has a more complicated model for example a 2D fit to a sample of data, for example
the effective mass MES and energy difference ∆E of a B meson, it is possible to enhance the
signal by cutting on variables not projected in the fit to data. An example of this would be the
following

38

-4 -2 0 2 4

E
nt

ri
es

0

20

40

60

-4 -2 0 2 4

E
nt

ri
es

0

20

40

60

Figure 24: An example of using the AFitProjectionPlot class to plot a Gaussian PDF and
generated data set.

s

RooPlot * frame = plotter.makePlot(‘‘mes>5.27’’, *DeltaE, data, pdf);

where the RooDataSet passed to the makePlot function will automatically have the cut applied
to it in order to produce the plot with a correct normalization. One can see the effect of
making such a cut by comparing the distribution of data before and after applying it. This
particular example is available in examples/testAFitProjectionPlot.cc and Figure 25 shows
the distribution of generated data before and after applying the cut of MES > 5.27 to it.

5.2.2 Example: Plotting an asymmetry

There is an interface method for plotting asymmetries on data using the AFitProjectionPlot

class. For example, one can make an asymmetry plot as a function of ∆t deltat for a time-
dependent CP analysis where there is a flavour tag variable tag, a data sample data, a prototype
with conditional variables proto that includes the flavour tag using the function call

RooPlot * frame = plotter.makeAsymmetryPlot(deltat, tag, data, pdf, proto);

where the end result should look similar to Figure 26.

39

Discriminating Variable
-0.2 0 0.2

E
nt

ri
es

0

100

200

Discriminating Variable
-0.2 0 0.2

E
nt

ri
es

0

100

200

Discriminating Variable
-0.2 0 0.2

E
nt

ri
es

0

50

100

150

200

Discriminating Variable
-0.2 0 0.2

E
nt

ri
es

0

50

100

150

200

Figure 25: An example of using the AFitProjectionPlot to make signal enhanced projections:
(left) before and (right) after cutting on MES .

 t∆
−10 −5 0 5 10

A
sy

m
m

et
ry

−0.5

0

0.5

 t∆
−10 −5 0 5 10

A
sy

m
m

et
ry

−0.5

0

0.5

Figure 26: An example of using the AFitProjectionPlot to make a ∆t asymmetry plot.

5.2.3 Pull Plots

Given a RooPlot that has both a data set and a curve plotted on it, you can produce a pull
plot, that is a plot of the difference between the curve and the data points, normalized to the

40

error on the data by doing the following

RooHist * datahist = frame.getHist(‘‘TotalModelData plot bMes’’);

RooCurve * curve = frame.getCurve(‘‘TotalModelProjected’’);

RooHist * PullPlot = plotter.makePullPlot(datahist, curve);

PullPlot.Draw(‘‘A*’’);

which will result in a pull plot like Figure 27 being draw.

5.25 5.255 5.26 5.265 5.27 5.275 5.28 5.285 5.29
-3

-2

-1

0

1

2

3

pullspulls

Figure 27: An example of using the AFitProjectionPlot class to make a pull plot.

5.2.4 Likelihood Projection Plots

One way to enhance the signal content of a data sample when making a projection, is to cut
on a likelihood ratio of the projected variables (this ratio does not use information from the
plotted variable). The likelihood ratio computed in AFitProjectionPlot is the loge of the ratio
of signal to total likelihoods. The following code snippet illustrates how to make a liklihood
ratio projection plot:

AFitProjectionPlot plotter;

RooPlot * llrframe = plotter.makeLRProjectionFrame(pdf, data, varToPlot, sigCompName);

RooPlot * projframe = plotter.makeLRProjection(pdf, data, varToPlot, sigCompName, cutVal);

where pdf is the total PDF, data is the data set to use when making the projection, varToPlot
is a TString whose value is the variable to plot, and sigCompName is the component ’signal’

41

to enhance. The argument cutVal is the minimum value of the likelihood ratio for projected
events. Figure 28 shows the likelihood ratio distribution, and the corresponding before/after
signal enhancement projections of the data. Both the total and signal PDFs are plotted on the
RooPlot of the projection made using the makeLRProjection function.

Discriminating Variable
5.25 5.26 5.27 5.28 5.29

E
nt

ri
es

0

50

100

150

Discriminating Variable
5.25 5.26 5.27 5.28 5.29

E
nt

ri
es

0

50

100

150

log(Lsig/Ltotal)
0 0.2 0.4 0.6 0.8 1 1.2

E
ve

nt
s

/ (
 0

.0
13

20
21

)

0

20

40

60

80

100

120

140

log(Lsig/Ltotal)
0 0.2 0.4 0.6 0.8 1 1.2

E
ve

nt
s

/ (
 0

.0
13

20
21

)

0

20

40

60

80

100

120

140

Discriminating Variable
5.25 5.255 5.26 5.265 5.27 5.275 5.28 5.285 5.29

E
ve

nt
s

/ (
 0

.0
01

33
33

3
)

0

5

10

15

20

25

30

Discriminating Variable
5.25 5.255 5.26 5.265 5.27 5.275 5.28 5.285 5.29

E
ve

nt
s

/ (
 0

.0
01

33
33

3
)

0

5

10

15

20

25

30

Figure 28: The distribution of (top) the projection of mES , (middle) likelihood ratio (bottom)
the projection after cutting on the likelihood ratio to enhance signal.

42

5.3 Likelihood Ratio Plots

A test that can be made between the a complicated PDF and a reference data sample is to
compute the ratio of the likelihood of an event to be signal Lsig normalised to the total likelihood
of an event to either signal or background Lsig +Lbg. The class AFitLRPlot computes this ratio
for a sample of simulated data generated from the PDF (toy data) and compares this to a
reference sample of data.

The likelihood for this example is one dimensional: the discriminating variable is the B meson
mass. The signal PDF is a Gaussian distribution centred at 5.28 GeV/c2 with a width of
10 MeV/c2, and the background distribution is described by an Argus function (see below).
Figure 29 shows the likelihood ratio

R =
Lsig

Lsig + Lbg
, (40)

for Monte Carlo data (points) and the shaded regions correspond to the simulated data generated
from the PDF. If the PDF describes the data properly, the data and toy data distributions will
agree and the signal should peak near R = 1, and the background should peak near R = 0. The
Figure clearly shows a background component that peaks near R = 1 which indicates that there
is no way to distinguish between the signal and part of the background using that particular fit
configuration.

Likelihood Ratio
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r

of
 E

nt
rie

s

0

10

20

30

40

50

60

70

80

90

Figure 29: The likelihood ratio R for a sample of Monte Carlo compared to a PDF. The signal
component of the PDF is shown in green and the background component is shown in red.

The code required to make the plot of Figure 29 available in example/likelihoddRatio.cc and
is shown here::

43

// the discriminating variable x is the beam constrained B meson mass.

RooRealVar x(‘‘x’’, ‘‘mass (GeV)’’, 5.25, 5.29);

// The background PDF

AFitArgus argus(x, ‘‘arguspdf’’);

RooAbsPdf * argusPDF = argus.getPdf();

// The signal PDF

AFitGaussian gauss(x, ‘‘gausspdf’’);

gauss.setParameter(‘‘mean’’, 5.28);

gauss.setParameter(‘‘width’’, 0.01);

RooAbsPdf * gaussPDF = gauss.getPdf();

// set the fraction of signal at 50%, so there is 90% background

// and generate 1000 toy events from the composite PDF.

RooRealVar sigfrac(‘‘sigfrac’’, ‘‘fraction’’, 0.5);

RooAddPdf pdf(‘‘pdf’’, ‘‘’’, RooArgList(*gaussPDF, *argusPDF), sigfrac);

Int t nToGen = 1000;

RooDataSet *data = (RooDataSet*)pdf.generate(RooArgSet(x), nToGen);

Double t nSig = sigfrac.getVal()*nToGen;

Double t nBG = nToGen-nSig;

// compute the likelihood ratio

AFitLRPlot lrplot;

lrplot.makePlot(gaussPDF, argusPDF, new RooArgSet(x), data, nSig, nBG);

5.4 TMVA Interface

The class AFitTMVAInterface is a utility to facilitate the computation of an MVA within an
analysis framework. See Ref. [11] for more information on the TMVA package. The TMVA
training options are steered from a text file (or the same PDF data card that you use for
your fit). The text file block is denoted by [TMVAInterface]. The following is an example
configuration used for computing a Fisher and training a Boosted Decision Tree with TMVA:

[TMVAInterface]

sigFile = tmva fsig.root

bgFile = tmva fbg.root

dataName = data

outputFileName = tmva out.root

trainingMethod = Fisher,BDT

variables = a:F,b:F

44

The signal and background files are specified by assigning values to sigFile and bgFile. It
is assumed that the input data come from a RooDataSet with a name given by the value of
dataName. The output file has the default value of tmva out.root. More than one training
method can be booked for the variables going into the MVA. This is done by assigning the
appropriate method to a comma-separated list of methods. The variables to train are specified
in a comma separated list with pairs of data: variable name:Type. TMVA recognises types of
I and F to distinguish between different integer variables (int, long int etc.), and floating point
variables (float, double). Once finished training MVAs, TMVA writes output to a sub-directory
called weights.

The known MVA types are: Cuts, Likelihood, HMatrix, Fisher, CFMlpANN, TMlpANN, BDT,
RuleFit, SVM, MLP. See the TMVA User Guide for more information on these [11]. Other
options that are recognised by AFit are described below:

• factoryOptions − This variable can be set to any of the options passed to the TMVA
factory on instantiation.

• trainingOptions − This variable can be set to define the options used when calling factory.PrepareTrainingAndTestTree

• preselectionCut − This variable can be set to define the preselection cut used when calling
factory.PrepareTrainingAndTestTree.

• analysisprefix − This is the name of the TMVA::Factory instance used (also the weight
file prefix name).

Once the training configuration file has been prepared, this can be used by typing the following:

AFitTMVAInterface a(‘‘myConfigurationFile.txt’’);

a.trainMethods();

TMVA will run the specified classifiers with the specified variables found in the source files. Once
you’ve inspected the output of TMVA, and decided which classifier(s) you want to consider using
in your fit, you can compute classifiers for RooDataSets using the AFitTMVAInterface::runReader
member function. This takes a RooDataSet as an argument, and will add columns to the data
set for each classifier specified in the configuration file. The new RooDataSet is passed back to
the user for storage. In the case that there are several files that you wish to process, you can
use the overloaded function of the same name that takes two string arguments (the first string
is the initial file, and the second string is the target file).

5.5 Toy Monte Carlo Validation of the likelihood

The AFitToy class has been implemented in order to simplify the process of running toy Monte
Carlo validations of the likelihood function. The process of running a toy Monte Carlo study
involves

45

1. Setting the random number seed for use in generation, this ensures that one is able to
reproduce exactly the same sample of data using the same sequence of random numbers
each time. One will have to use different seeds for different toy Monte Carlo samples.

2. Determining the number of events to generate. If one analyses an ensemble of toys, it is
necessary to generate a mean number of events according to a Poissonian distribution.

3. Generating the simulated data sample: there are several ways of doing this depending on
the type of toy to be performed, and the preferred context.

4. Fitting the simulated data sample.

5. Persisting the results of the fit for further analysis.

Given a pdf and a RooArgSet of discriminating variables the AFitToy class can be used to
generate toy Monte Carlo samples of events as follows:

AFitMaster master(‘‘AFit/example/MuonLifetime.txt’’);

RooAbsPdf * pdf = master.getPdf();

// Get the time variable from the AFitMaster.

RooArgSet * compSet = pdf->getComponents();

RooArgSet * parSet = pdf->getParameters(compSet);

RooRealVar * t = (RooRealVar*)parSet->find(‘‘t’’);

// make the interface used to run toys

AFitToy toy;

for(int i=0; i < 10; i++){
// generate the toy data

toy.setSeed(i);

RooDataSet * data = toy.generateToySample(pdf, RooArgSet(*t), 1000, 0);

// fit the toy data

RooFitResult * r = pdf.fitTo(data, ‘‘etrm’’);

}

where the muon lifetime fit example has been used for this toy (see Section 6.1). The argu-
ments to generateToySample are a pointer to the RooAbsPdf to fit, the set of variables to
generate, the number of events to generate, and the prototype to use for any conditional vari-
ables that you want to generate. The total number of events generated in each toy sample
will have a Poisson mean of 1000. This default behaviour can be switched off by calling the
toy.setPoisson(kFALSE); before generating. If one does this, then each toy will have exactly
100 events generated.

There are more sophisticated toy generation functions to call. The highest level one is illustrated
in the following muon lifetime fit example:

46

AFitToy toy;

toy.setOutputDir(‘‘toy/’’);

toy.generateToys(‘‘macros/MuonLifetime.txt’’, ‘‘fpr’’, 1, 100, 0);

The AFitToy instance uses the input configuration file to build the likelihood fit model. The
second argument “fpr” determines what is done with the generated data (described below).
Using the likelihood, toys with initial random number seeds corresponding to the toy number (1
through 100, the third and fourth arguments to the generateToys member function). The final
argument is a prototype that can be used when generating toy samples for any likelihoods that
depend on conditional variables.

The options “fpr” determine the following

• f − Fit the generated data.

• p − Persist the generated data in a root file. The file name is iSeed toydata.root, and the
data are saved as a RooDataSet (data).

• r − Persist the results in a root file. The file name is iSeed toyresults.root, and the
RooFitResult (fitResult) is saved to the file, along with a TTree (resultdata) that contains
the fit result information.

In order to inspect the results of an ensemble of toy MC experiments, it is easy to chain together
the resultdata TTrees obtained using the following

TChain chain(‘‘resultdata’’);

toy.setOutputDir(‘‘toy/’’);

toy.chainResults(chain, 1, 100);

If you want to make sure that fits converged ok with status = 0, then the last line should be re-
placed by toy.chainResults(chain, 1, 100, kTRUE);. The chainResults member function
checks to see if a file exists before trying to add it to a chain, and any zombie files are skipped
automatically.

5.6 Toy Monte Carlo Validation: Embedded Toys

The previous section summarised tools used to run Toy Monte Carlo validation studies where
the likelihood is used to generate an ensemble of data samples to fit back. Any deviation from
the input results would be a result of the intrinsic bias of the fit. In defining the likelihood, we
make assumptions about many things including the correlations between discriminating variables
in the fit. These assumptions can be tested by embedding simulated data samples obtained
from the Full Monte Carlo simulation for an experiment. The AFitToy utility has several
member functions to facilitate performing such a toy. These are generateEmbeddedToySample,

47

and generateEmbeddedToys. Given a large data sample of events from a Full Monte Carlo
simulation, one can create a number of subsamples with a predetermined number of events
using the following:

toy.generateEmbeddedToys(sourcedata, 1000, 1, 10);

where this example used 1000 events per sample, and generates 10 samples with numbers 1
through 10. The output data files are written to the directory specified by setOutputDir and
have file names that are <iToy> embtoydata.root. Once several files have been generated (for
example signal and background), they can be merged together using the mergeFiles5 member
function.

s

6 Examples

All example macros and configurations can be found in the AFit/example directory. These
examples are ready to run from the same directory that contains the AFit package. This
assumes that once you have compiled AFit, that you then load the shared library into root prior
to running these examples.

6.1 Fitting the muon lifetime

The muon lifetime can be fitted from data taken with a simple experiment where slow moving
muons from cosmic rays are trapped in a scintillator, and subsequently decay [12]. This process
results in to light pulses detected by a photomultiplier tube, and the different in time t between
the two pulses is recorded. The start time of the clock is the time when the muon enters the
detector, and the stop time is that when the muon decays into an electron and two neutrinos.
In addition to this signal process, there is a background which is assumed to be uniform in t.
So the PDF for this problem is given by

P = Nsignale
−t/τµ +Nbackground. (41)

This is a one dimensional problem with t being the sole discriminating variable. There are two
components: signal and background. The configuration file for this example is MuonLifetime.txt.
So the signal component is described by an exponential function, using a lifetime rather than
a constant as the parameter to be determined from data, and the background component is
described by a polynomial of order one with a coefficient of zero. The configuration file for this
example can be found in MuonLifetime.txt.

5This member function takes a pointer to a TObjArray as an argument for the list of input files to merge.
This TObjArray can be made from a comma separated list of files in a TString using TString::Tokenize(’,’).

48

If you run the MuonLifetime.cc example on the sample of data provided, you will obtain the
result τµ = 2.09 ± 0.02 µs which accounts for the interaction of µ− in matter. The distribution
of the data and the fitted PDF are shown in Figure 30.

s)µ (µτ
2 4 6 8 10 12 14 16 18 20

E
ve

nt
s

/ (
 0

.3
9

)

10

210

310

s)µ (µτ
2 4 6 8 10 12 14 16 18 20

E
ve

nt
s

/ (
 0

.3
9

)

10

210

310

Figure 30: Fitting the µ lifetime using the MuonLifetime.cc example.

The fit configuration of this example can be found in examples/MuonLifetime.txt. The first
line after [FitConfiguration] specifies the variable name t for the time difference between the
two signals from the photomultiplier tube.

[FitConfiguration]

variables = t

Each fit component (these are single, background listed in the configuration file option components

needs to have its form defined (see signal etc listed below. The names are defined by the comma
separated values in the components list.

components = signal,background

The fit range and number of bins used when plotting the discriminating variables is also defined.

t = 0.5 +/- 0.01 L(0.5 - 20.0) B(50)

The type of each fit component is specified, see Section 3 for a list of possible fit component
options.

49

signal = default

background = default

The final part of the FitConfiguration block specifies the fit yields, and allowed ranges for
each of the fit components.

signalYield = 30000 +/- 10.000 L(-100 - 1e6)

backgroundYield = 100 +/- 100.000 L(-1000 - 1e4)

Each fit component specified has to have the functional form of the PDFs defined. The available
options are listed in Table 1. For example the signal PDF for this example has an exponential
function for the t distribution,

[signal]

signal t type = exp

The parameters of the exponential function are set by the following

[signal t]

signal t constant = 2.2 +/- 0.1 L(-4.0 - 4.0)

signal t fitLifetime = true

where the block name is derived from the component name and variable name (this is just
< component name > < variable name >), and the PDF parameter names are prefixed by the
same string. In this particular example the option signal tfitLifetime is set to true, so that
the functional form of the exponential is e−t/constant where constant corresponds to the lifetime
(see section 2.9 for details). The background PDF is defined in an analogous way.

6.2 Simple rare B decay search at BaBar or Belle

Two kinematic variables can be used to select signal events in an e+e− → Υ(4S) → BB event.

These are mES and ∆E: mES =
√

(s/2 + pi · pB)2/E2
i − p2

B is the beam-energy substituted

mass and ∆E = E∗
B − √

s/2 is the difference betgween the B candidate energy and the beam
energy in the e+e− CM frame. Here the Brec momentum pB and four-momentum of the initial
state (Ei,pi) are defined in the laboratory frame, and E∗

B is the Brec energy in the e+e− CM
frame. The distribution of mES (∆E) peaks at the B mass (near zero) for signal events and
does not peak for background.

We can simultaneously fit the mES and ∆E to isolate our signal. In order to do this we
first need to decide how many fit components there are, secondly we need to determine what

50

the functional forms of the PDFs we will use to describe these components. The example
examples/rareBdecay.cc assumes that there is a signal component as well as a background
from B decays and a background from e+e− → qq events, where q = u, d, s, c.

The fit configuration of this example can be found in examples/rareBdecay.txt. The first line
after [FitConfiguration] specifies the variable names bMes (mES) and bDeltaE (∆E),

[FitConfiguration]

variables = bMes,bDeltaE

Each fit component (these are single, continuum, and Bbg0) listed in the configuration file
option components needs to have its form defined (see signal etc listed below. The names are
defined by the comma separated values in the components list.

components = signal,continuum,Bbg0

The fit range and number of bins used when plotting the discriminating variables is also defined.

bMes = 5.2700 +/- 0 L(5.25 - 5.29) B(30)

bDeltaE = 0.0000 +/- 0 L(-0.3 - 0.3) B(30)

The type of each fit component is specified, see Section 3 for a list of possible fit component
options.

signal = default

continuum = default

Bbg0 = default

The final part of the FitConfiguration block specifies the fit yields, and allowed ranges for
each of the fit components.

signalYield = 500.00 +/- 10.000 L(-100 - 10000)

continuumYield = 2000.00 +/- 10.000 L(-100 - 10000)

Bbg0Yield = 50.000 +/- 10.000 L(-100 - 10000)

Each fit component specified has to have the functional form of the PDFs defined. The available
options are listed in Table 1. For example the signal PDF for this example has a Gaussian for
the mES distribution and a Landau function for the ∆E.

51

[signal]

signal bMes type = gaussian

signal bDeltaE type = landau

where each PDF type is chosen by specifying a value to the label given by < component name >
< variable name > type. The remainder of the configuration file specifies the functional form

of the other fit components, and the PDF parameters for each PDF of each variable for the fit
components.

The AFitMaster class us used in order to construct this fit model at the start of examples/rareBdecay.cc:

AFitMaster master(‘‘AFit/example/rareBdecay.txt’’);

RooAbsPdf * pdf = master.getPdf();

The remainder of the example macro uses this PDF to generate a sample of simulated data
using the AFitToy class (See section 5.5) and to plot the pdf and simulated data using the
AFitProjectionPlot class (See section 5.2).

6.3 Fitting a ∆t resolution function

The Resolution PDF described in Section 2 is used to model the resolution on the proper time
difference ∆t between the decays of two neutral B mesons in an event at the B-Factories. The
resolution function parameters are scaled (multiplied) by the error on σ(∆t) on an event-by-
event basis. In order to use this PDF you need to define the discriminating variable, and if
appropriate the corresponding conditional variable σ(∆t). Having done this you can instantiate
the AFitResolution class:

RooRealVar deltat("reso dt", "dt", -10.0, 10.0);

RooRealVar deltatErr("deltaterr", "sdt", 1.2, 0.0, 2.50);

AFitResolution resoBld(&deltat, &deltatErr, "SigReso");

As this example requires that the mean and core parameters are scaled by σ(∆t), we must set
the following

resoBld.setParameter(‘‘scaleCoreMean’’,"yes");

resoBld.setParameter(‘‘scaleTailMean’’,"yes");

resoBld.setParameter(‘‘scaleCoreWidth’’,"yes");

resoBld.setParameter(‘‘scaleTailWidth’’,"yes");

Having configured the PDF, it is possible to now make it using

52

RooAbsPdf * pdf = resoBld.getPdf();

All of these steps can be replaced by a configuration file with the appropriate settings, and
the use of the AFitMaster member function makeConditionalPdf. The makeConditionalPdf

function takes a discriminating variable, a conditional variable, a PDF type and a PDF name
as arguments. Once you have built your resolution model, it is possible to use it - as the PDF
uses a conditional variable, you need to construct a prototype. For example, if you have a TTree
called tree, you can construct a RooDataSet, and σ(∆t) prototype with the following

RooDataSet data("rds", "the data", tree , RooArgSet(deltat, deltatErr));

RooDataSet * proto = data->reduce(RooArgSet(deltatErr));

and subsequently fit the data, and make a plot of the data

pdf->fitTo(data, "trh");

AFitProjectionPlot plotter;

RooPlot * frame = plotter.makePlot(deltat, &data, pdf, proto);

where you note that the prototype is required for plotting. An example macro demonstrating
the use of the resolution function PDF with a test data sample can be found in the examples
directory as resolutionFunction.cc and resolutionFunctionData.root.

6.4 RooSimultaneous: splitting a PDF by categories

The AFitMaster::makeSimPdf member function allows a user to construct a RooAbsPdf that is
subsequently split by one or more RooCategories according to a specified rule. The example
described below can be found in the files simpdf.cc and simpdf.txt.

Before defining how to split a PDF up according to categories, the fit model needs to be defined
in the normal way. This example uses two two discriminating variables (mES and ∆E) and two
fit components: signal, and background. The signal component has a Gaussian PDF for each
of the discriminating variables, whereas the background mES distribution is described by an
Argus PDF, and the background ∆E distribution is described by a polynomial (similar to the
example in Section 6.2).

In order to specify how the PDF is modified according to different categories, these categories
and splitting rules have to be specified in the [FitConfiguration] data card block. For this
example, the pdf will be split according to signal decay type (the decay category) and by the
flavour tag (the tagcat category). The following snipped of the example data card defines how
the PDF is modified:

53

catVars = tagcat,decay

splitRule = tagcat : signal bMes mean

tagcat categories = Lepton,Kaon1,Kaon2,KaonPion,Pion,Other,NoTag

decay categories = JpsiK0S,JpsiK0S pi0pi0,JPsiK*0,Psi2SK0S,Chic1K0S

decay splitrule = decay : signal bDeltaE width

The catVars variable is followed by a comma separated list of category variables that the PDF
will be split by. The individual categories are themselves defined by the 〈category name〉 categories
variables. The individual category labels are numerically numbered 0, 1, 2, . . . for each of the cat-
egory variables. The splitting rule that defines what PDF parameters are split by what category
needs to be defined. This rule can either be defined using the splitRule variable of the data
card, or by the individual 〈category name〉 splitrule variables for each of the categories. The
format of the split rules is the category name, followed by a colon ’:’, and then a comma sepa-
rated list of PDF parameters that should be split by this category. Note that it is not possible to
split a parameter by more than one category. In this example, the tagcat splitting rule has been
specified using splitRule, and the decay splitting rule was specified using decay splitrule.

Once the data card has been properly defined, the simultaneous pdf is built using

AFitMaster master(‘‘macros/simpdf.txt’’);

RooAbsPdf * simpdf = master.getSimPdf();

The second example of using a RooSimultaneous to split a PDF by category, is based on the
previous discussion: see simpdf2.cc and simpdf2.txt. This is a signal plus background model
as above, where the PDF is split by decay mode. There are four different signal decays under
consideration: J/ψK0

S , J/ψK0
S(K0

S → π0π0), J/ψK∗0, ψ(2S)K0
S . The parameters that are split

by the decay category are signal yield, background yield and the ∆E width. Figure 31 shows
the mES and ∆E distributions of four of the five decay channels based using a simulated data
sample.

In order to generate the simulated data, a prototype data set containing the decay category is
constructed. The total number of entries in the data set of each decay type corresponds to the
sum of signal and background. Having prepared the prototype data set, the AFitToy utility (see
Section 5.5) is used to generate the data sample to fit and plot. The projections are made using
the AFitProjection utility (see Section 5.2).

6.5 Time-dependent CP asymmetry fit

In order to fit for time-dependent CP asymmetries in Υ(4S) → B0B
0

decays one can use the
AFitBCPGenDecay class. Before instantiating this class, a resolution function needs to be set
up (see Sec. 6.3). The example cpfit.cc illustrates how to set up a time-dependent fit for a
signal decay like B0 → J/ΨK0

S . Figure 32 shows the resulting distributions of ∆t for B0, and

B
0

tagged events, as well as the time-dependent CP asymmetry.

54

)2 (GeV / cESm
5.25 5.26 5.27 5.28 5.29

E
nt

ri
es

0

50

100

150

)2 (GeV / cESm
5.25 5.26 5.27 5.28 5.29

E
nt

ri
es

0

50

100

150

)2 (GeV / cESm
5.25 5.26 5.27 5.28 5.29

E
nt

ri
es

0

50

100

)2 (GeV / cESm
5.25 5.26 5.27 5.28 5.29

E
nt

ri
es

0

50

100

)2 (GeV / cESm
5.25 5.26 5.27 5.28 5.29

E
nt

ri
es

0

20

40

60

80

)2 (GeV / cESm
5.25 5.26 5.27 5.28 5.29

E
nt

ri
es

0

20

40

60

80

)2 (GeV / cESm
5.25 5.26 5.27 5.28 5.29

E
nt

ri
es

0

10

20

30

40

)2 (GeV / cESm
5.25 5.26 5.27 5.28 5.29

E
nt

ri
es

0

10

20

30

40

 E (GeV)∆−0.1 0 0.1

E
nt

rie
s

0

100

200

 E (GeV)∆−0.1 0 0.1

E
nt

rie
s

0

100

200

 E (GeV)∆−0.1 0 0.1

E
nt

rie
s

0

20

40

60

 E (GeV)∆−0.1 0 0.1

E
nt

rie
s

0

20

40

60

 E (GeV)∆−0.1 0 0.1

E
nt

rie
s

0

50

100

 E (GeV)∆−0.1 0 0.1

E
nt

rie
s

0

50

100

 E (GeV)∆−0.1 0 0.1

E
nt

rie
s

0

10

20

30

40

 E (GeV)∆−0.1 0 0.1

E
nt

rie
s

0

10

20

30

40

Figure 31: The (top four) mES and (bottom four) ∆E distributions for the four decay channels
used in the example. The decay channels are (left to right top to bottom) J/ψK0

S , J/ψK0
S(K0

S →
π0π0), J/ψK∗0, ψ(2S)K0

S .

One final finesse that is required for a realistic time-dependent CP asymmetry fit is to split the
final PDF by flavour tagging category, and to ensure that all appropriate parameters are split
accordingly: ω, ∆ω, µ, and any resolution function parameters that are different for different
flavour tagging categories (see Sec. 6.4).

The example cpfit tagging.cc and associated configuration file illustrate how to extend the
simple macro described above in order to split by tagging category. The parameters that are

55

dt
−10 −8 −6 −4 −2 0 2 4 6 8 10

E
ve

nt
s

/ (
 0

.2
)

0

50

100

150

200

250

300

350

400

A RooPlot of "dt"

dt
−10 −8 −6 −4 −2 0 2 4 6 8 10

E
ve

nt
s

/ (
 0

.2
)

0

50

100

150

200

250

300

350

400

A RooPlot of "dt"

dt
−10 −8 −6 −4 −2 0 2 4 6 8 10

E
ve

nt
s

/ (
 0

.2
)

0

50

100

150

200

250

300

350

400

A RooPlot of "dt"

dt
−10 −8 −6 −4 −2 0 2 4 6 8 10

E
ve

nt
s

/ (
 0

.2
)

0

50

100

150

200

250

300

350

400

A RooPlot of "dt"

dt
−10 −8 −6 −4 −2 0 2 4 6 8 10

−1

−0.5

0

0.5

1

A RooPlot of "dt"

dt
−10 −8 −6 −4 −2 0 2 4 6 8 10

A
sy

m
m

et
ry

 (
da

ta
_p

lo
t1

__
de

lta
t −

 d
at

a_
pl

ot
2_

_d
el

ta
t)

/(
da

ta
_p

lo
t1

__
de

lta
t +

 d
at

a_
pl

ot
2_

_d
el

ta
t)

−1

−0.5

0

0.5

1

A RooPlot of "dt"

Figure 32: The ∆t distribution for (top) B0, and (middle) B
0

tagged events, as well as (bottom)
the time-dependent CP asymmetry.

split by the tagging category are a tagging efficiency associated with the signal yield which is
called signal tageff, as well as the mistag parameters ω and ∆ω.

7 Acknowledgements

The following people have contributed to the development of this package: Fergus Wilson
(Rutherford Appleton Laboratory).

References

[1] The RooFit web page is http://roofit.sourceforge.net/.

[2] The MINUIT user guide can be obtained from http://wwwasdoc.web.cern.ch/wwwasdoc/minuit/minmain.html

[3] The ROOT web page is root.cern.ch.

[4] “Statistics: A Guide to the Use of Statistical Methods in the Physical Sciences”, R. Barlow,
John Wiley & Sons Ltd (1989).

[5] “Statistical Data Analysis”, G. Cowan, OUP (1998).

[6] H. Albrecht et al.(ARGUS Collaboration) Phys Lett B241 (1990) 278.

56

[7] M. J. Oreglia, Ph.D Thesis, SLAC-236, Appendix D, (1980); J. E. Gaiser, Ph.D Thesis,
SLAC-255, Appendix F, (1982); T. Skwarnicki, Ph.D Thesis, DESY F31-86-02, Appendix
E, (1986).

[8] G. J. Gounaris and J. J. Sakurai, Phys. Rev. Lett 21 244 (1968).

[9] K. S. Cranmer, Comp. Phys. Comm. 136, 198 (2001).

[10] L. Landau, J. Phys. USSR 8 (1944) 201; see also W. Allison and J. Cobb,
Ann. Rev. Nucl. Part. Sci. 30 (1980) 253.

[11] The TMVA web page is http://tmva.sourceforge.net/

[12] The apparatus referred to here is described at http://www.matphys.com/ and references
therein.

57

