
a.j.bevan@qmul.ac.uk

HEP Computing
Part II

Scripting
Adrian Bevan

Lectures 4,5

a.j.bevan@qmul.ac.uk

Lecture 4
•  Introduction to scripts: what are they, how do you write
 and run them?
•  Using bash

a.j.bevan@qmul.ac.uk

Scripting

This section covers the idea of putting together use of
commands into a unit/block i.e. a script:

 - how to write your own scripts
 - understand other people’s scripts
 - know where to get more information

The benefit of scripting is the automation of common repetitive
Tasks; so you get

 greater productivity
 time to spend elsewhere doing more interesting things

There are many different ways to get the same result – as long
as the script works there is no right or wrong solution – just
do/use what works for you.

a.j.bevan@qmul.ac.uk

Aim to learn two things:

A basic grasp of a shell scripting language and something like PERL

bash – default shell PERL

and give a crash course in PERL

What should you learn?

Other shells exist,
you may come
across some of
these: tcsh, ksh,
…

a.j.bevan@qmul.ac.uk

So what is a script?
A set of commands in a file that are executed sequentially

Basics: •  Start file with a ‘#!’

•  follow this with the path to the program
 [e.g. bash, tcsh, PERL, python…] use which
 to find a program if you don’t know where
 it is! e.g. which perl

•  after this comes the commands that are run

•  comments start with ‘#’ and continue
 to the end of the line

• chmod u+x scriptname to change the file
 permissions so you can run the script

•  run using ./scriptname or if you have
 ‘.’ in your path just use scriptname

a.j.bevan@qmul.ac.uk

you can check to see if a file is executable
using ls -l

bfa ~/Lectures/scripts > ls -l
total 24
-rwxr----- 1 bevan bfactory 1632 Aug 20 13:39 jot*
-rwxr----- 1 bevan bfactory 231 Aug 19 13:42 loopTest.sh*
-rwxr----- 1 bevan bfactory 240 Aug 19 13:45 loopTest.tcsh*
-rwxr----- 1 bevan bfactory 197 Aug 21 15:28 sanr*
-rw-r----- 1 bevan bfactory 241 Aug 21 15:28 sanr2
-rwxr----- 1 bevan bfactory 673 Aug 20 13:43 texIt*

User permissions

Group permissions

‘Other’ permissions
(any user) user name

of file owner

timestamp of modification

filename

group of user
who owns file

file is executable

file size
r = readable
w = writable
x = executable

Aside: File Permissions

a.j.bevan@qmul.ac.uk

The command chmod can be used
to change permissions on files and

directories. To make the file
executable to the user just type:

chmod u+x forlooptest.sh

bfa ~/Lectures/scripts > ls –l forlooptest.sh
-rw-r----- 1 bevan bfactory 240 Aug 19 13:45 forlooptest.sh

You can only read and write this file

bfa ~/Lectures/scripts > chmod u+x forlooptest.sh
bfa ~/Lectures/scripts > ls –l forlooptest.sh
-rwxr----- 1 bevan bfactory 240 Aug 19 13:45 forlooptest.sh*

Now this can also be executed

Aside: Making a file executable

a.j.bevan@qmul.ac.uk

#!/usr/local/bin/perl –w
print "Hello World\n";

You DO want this with perl!
it gives warnings when you

start to do things wrong

#!/bin/bash
echo "Hello World"

#!/bin/tcsh
echo "Hello World"

The “Hello World” example:

a.j.bevan@qmul.ac.uk

bash: have configuration files that are run

 - at login
 - start of a shell
 - log out

These files have different names as given later on. In addition to this, there is a
history file that records what commands you have used recently.

I’ll assume that your default shell is the bash shell. There are other shells that
you may encounter – these all have similar functionality (e.g. ksh, tcsh) but
slightly different syntax.

General Comments

a.j.bevan@qmul.ac.uk

bash – an introduction

•  #!/bin/bash - invoke the shell [if this doesn’t work try ‘which bash’ to find it]
•  use sh/bash in a production environment if you ever do anything REALLY serious

Config files run at
 .bash_profile login (your basic shell setup). Changes

 will be picked up the next time you log
 into a machine.

 .bashrc shell start up [may not exist, run
 via the .bash_profile].

 .bash_logout logout.

Other useful files:
 .history record of last session’s commands.

bash is a robust shell for general use. http://www.gnu.org/software/bash/

 use the history command to see the history of shell commands that you have used

a.j.bevan@qmul.ac.uk

if [condition]
then
 # do something
else
 # do something else
fi

for I in <list>
do
 echo $I
done

while [condition] ; do
 #do stuff
done

loops

environment
& variables

var=value
export var

export var=value

set the value
(can use in scripts)

can export value
after setting it.

set and export variable
to the environment

bash For these examples, there is a condition
in square brackets: [some condition]

until [condition]; do
 # do something
done

a.j.bevan@qmul.ac.uk

if ["$MYVAR" == "yes"]
then
 echo "yes"
else
 echo "no"
fi

export MYLIST="a b c d"
for I in $MYLIST
do
 echo $I
done

while ["foo" != "bar"] ; do
 echo "ere I am J.H."
done

loops

environment
& variables

var=value
export var

export var=value

bash For these examples, there is a condition
in square brackets: [some condition]

until ["foo" == "bar"] ; do
 echo "ere I am J.H."
done

set the value
(can use in scripts)

can export value
after setting it.

set and export variable
to the environment

a.j.bevan@qmul.ac.uk

$PATH path to search for apps
$LD_LIBRARY_PATH path to search for libs
$HOME your home directory
$USER your UID
$ROOTSYS root install directory
$SHELL the shell you’re using
$EDITOR e.g. emacs
$PRINTER e.g. PRINTER=ds

access variables with $ prefix

Some Important environment variables

a.j.bevan@qmul.ac.uk

#!/bin/bash
forlooptest.sh

simple example of looping over more than one directory
and performing an action on the directory

for thisdir in `ls -F | grep '/'`
do
 echo "looking at directory $thisdir"
 ls $thisdir
done

The shell

Run the command in ` ` to
get the list of directories.

Loop over the directories and list
the content of each one

forlooptest.sh

Example script: looping in tcsh

a.j.bevan@qmul.ac.uk

~ > ./Lectures/scripts/forlooptest.sh

looking at directory bin
NNMakeAllCfgFiles* diagonalize*
icrootqsub*
NNMakeCfgFiles* diagonalizeConservative*
makeFlatFile*
NNMakeInputFiles* fitForPulls.cc
makeSimFitFile*
add20MeVtoFlatFile* gdb_root*
min2stats*
blind_data_sample* getErrors*
parseBfreport*
calculateLikelihoodUL.c getPullTable* sqlplus*
clean_package* getPulls* wroot*
combineInQuadrature* getSigTable* wroot~*
cullDeadRootFiles getSignificance*

looking at directory scripts
Acrobat.ps dos2unix* myCronJobs
CronJpsitollKanga excludeFile.txt myCronJobs-
old*
CronTest* finalize myPs2Gif*
RandomHacks/ findDeadNodes* niceJobs*
RecursiveFileSearch.pm findMissingLines* opr/
etc.

•  If I run forlooptest.sh from my home directory I get the following output

same as doing the commands
 echo "looking at.."
 ls bin
 echo "looking at.."
 ls scripts
 echo "looking at.."
 ls analysis
 echo "looking at.."
 ls tex

Using a script to do work for you

a.j.bevan@qmul.ac.uk

•  If you try to set an environment variable in the following way

 export TEST=date

 the value assigned to TEST will the string ‘date’.

• You can use backticks: `<command>` to access the output obtained when executing
 a command in a script.

 # set MYDATE to have the value of the date command’s output
 export MYDATE=`date`
 # set TODAY to be the day of the week, based on the date command
 export TODAY=`date | awk ’{print $1 }’`

You can inspect the values set for the environment variables by typing

 echo $DATE
 echo $TODAY

Backticks can be extremely useful in scripts!

Getting at the output of a command

a.j.bevan@qmul.ac.uk

•  Write and get working the ‘hello world’ shell script example shown previously

•  Write a script to loop over a list of variables and echo each value (hint see examples).

•  Write a script to take arguments from the command line and write an output file
 containing these.

 hint, the variable $0 is the script name used and $1, $2, … $n are the
 n arguments supplied to the command line. see the echo command

 Then manipulate the output of the date command into a timestamp for the name
 of the log file [hint – can use awk and backticks e.g.: export mydate=`date`].

Here are a few examples to work through. You will learn how to
 1) write your own script and make sure you can run it
 2) know how to get at the output of another command in your script
 3) loop over a list in a script
 4) access the command line arguments given to a script

Shell Scripting Examples

a.j.bevan@qmul.ac.uk

Examples: 1) Hello World

•  Open a file called hello.pl
•  enter the following into the file:

#!/usr/bin/perl –w
print "hello world\n";

check this matches the output of
the command:
 which perl

•  Change the permissions on the file so that you can run this:

 chmod u+x hello.pl

•  Now you can run the script using:

 ./hello.pl

 tcsh and bash examples can be taken from page 8
 As an aside – this is simple & you can do this on the command line;
 try typing the following command:
 perl –e ‘print "hello world\n"’

a.j.bevan@qmul.ac.uk

Examples: 2) Getting information from the system: tcsh

•  Write a new script called test1.sh and start this off in the usual way:
#!/bin/bash
for fi in `ls`
do
 echo "Found file $fi"
done

•  change permissions so you can run the script and use the command ls on
 the current directory

 chmod u+x test1.sh

 and get the output to print. It should look something like:

listing the content of your current directory

Found file hello.txt
Found file jot
Found File loopTest.sh
.
.
.

shell

loop

a.j.bevan@qmul.ac.uk

Examples: 3) more looping

•  Use a while loop to count from 1 to 10 in a script.

 mycounter=1

 while [$mycounter -lt 11]; do

 echo The counter currently has the value $mycounter
 let mycounter=mycounter+1

 done

D
o stuff

end of loop

start index of loop
loop condition

index variable

whilelooptest.sh

a.j.bevan@qmul.ac.uk

Examples: 4) more looping

•  Use an until loop to count from 1 to 10 in a script.

 mycounter=1

 until [$mycounter -gt 10]; do
 echo The counter currently has the value $mycounter
 let mycounter+=1
 done

Very similar to the while loop.

D
o stuff

end of loop

start index of loop
loop condition

index variable

untillooptest.sh

a.j.bevan@qmul.ac.uk

Examples: 5) Using command line arguments

Aim: Want to parse arguments to a script e.g.:
 ./myScript a b c

 so that the script can use ‘a’, ‘b’ and ‘c’ to do stuff

•  Start off in the usual way – open a new file and enter:

#!/bin/bash

echo "1st Argument $1"
echo "2nd Argument $2"
echo "3rd Argument $3"

•  Then change the permission to run the file and add the commands to print out the
 input arguments:

#!/usr/bin/perl –w
use strict;

foreach my $iarg (@ARGV)
{
 print "$iarg\n";
}

The command line arguments
are $n for shell scripts

Similar to C, C++, use variable ARGV
to get arguments. ARGV[0] is script name
ARGV[1] is the first argument etc.

a.j.bevan@qmul.ac.uk

You want to run forlooptest.sh and put the output into a file:

 forlooptest.sh > test.txt

redirect the output of the command
forlooptest.sh into the file test.txt

You want to print the day of the week , month of the year and the year only from
the date command:

 bfa ~ > date
 Fri Sep 5 16:26:26 BST 2003
 bfa ~ > date | awk '{print $1 " " $2 " " $3 " " $6}'
 Fri Sep 5 2003

The pipe ‘|’ means take the output of the first
command and pass it to the second command

Examples – use of scripts etc.

a.j.bevan@qmul.ac.uk

You want to append one file to the end of another:

 forlooptest.sh > test.txt
 date | awk '{print $1 " " $2 " " $3 " " $6}' >> test.txt
 cat somefile.txt >> test.txt

The >> operator appends information
to the file test.txt

You can see that the special characters

 |, > and >>

that you’ve just been introduced to are quite useful in writing log files of
events that happen when commands are being executed. There are a
number of these listed on page 25.

a.j.bevan@qmul.ac.uk

Lecture 5
•  Special Characters.
•  A crash course in PERL.

a.j.bevan@qmul.ac.uk

Special Characters & useful syntax

To get the most out of scripting you’ll need some background information
 > redirect output
 >> append to output file
 < redirect input
 << ‘here document’ (redirect input)
 | pipe output
 & run process in bkgnd
 ; separate commands on one line
 ? match single character
 * match any character(s)
 `<command>` substitute for output of <command>: “back-ticks”
 $$ process ID number of a script
 $0 command name
 $n argument n
 $var variable
 # comment

take the output of one command
and pass it to another

You’ll pick up more along the way – useful resources are
 UNIX Power Tools
 LINUX in a Nutshell

but these are more in depth than you’ll need for quite a while

redirect into a file ➼
➼

➼
➼
➼
➼
➼
➼

➼
➼
➼

a.j.bevan@qmul.ac.uk

* match all
? match to any single character

e.g.

 ls *.txt list all files with a .txt extension
[tersk01] ~ > ls *.txt
12seriesCheck.txt markus-tagging.txt sxf.float.txt
7bbgndresults.txt pipi.txt systematics.txt
bad-521.txt productionMC.txt tau.txt
correlations.txt quinn.txt test.txt
crossFeed.txt rad_ll.txt twoBodyModes.txt
dataCardVMassHelData.txt* resultSummary.txt unblindResults.txt
deChecks.txt rr.txt validation_25_06_03.txt
ee.txt rr_to_do.txt validation_27_06_03.txt

ls ?r*.txt list all files with an extension .txt and ‘r’ as the second
 character in the file name

[tersk01] ~ > ls ?r*.txt
crossFeed.txt productionMC.txt rr.txt rr_to_do.txt

Wildcards and pattern matching

a.j.bevan@qmul.ac.uk

•  PERL is more powerful than either tcsh or bash

•  Supports Object Oriented programming paradigm

•  large community base – modules
• CGI – web forms/html generation etc
• DB connectivity: mySQL etc
• POSIX / Networking
• 
• 
•  you name it – there is probably something there to help you

•  REGEXP engine – powerful pattern matching/substitution

•  In a nutshell – PERL is a language to glue everything else together for you

http://www.perl.com
http://www.perl.org
http://www.perlmonks.org

PERL – an introduction

a.j.bevan@qmul.ac.uk

The Aim of this part of the course is to give you a crash course in PERL.
In particular the following topics introduced are

 variable types

 accessing the system

 what a simple PERL script looks like

 Getting at the command line arguments

 printing in PERL

 Some example scripts

a.j.bevan@qmul.ac.uk

What a simple PERL script looks like

#!/usr/local/bin/perl –w
use strict;

#scalars
my $var = 5;
my $name = "wibble";

#array
my @arr = (1.0, 2.0, 3.0);

foreach (@arr)
{
 my $num = $_ + $var;
 print "$_ \t $num\n";
}

Gives warnings – you SHOULD
ALWAYS USE THIS

checks for declared types – like
FORTRAN’s ‘implicit none’

declare variable using ‘my’

similar special print characters to C/C++
\t = tab, \n = new line character

semi-colon terminates line
[not necessary for last line
 in a block]

special character

a.j.bevan@qmul.ac.uk

Basic types
Scalar variable

• Starts with a ‘$’
• can be a number or a string …

 $num = 5;
 $name = "wibble";

Array variable
• Starts with a ’@’
• null initialiser: @arr = ();
• can push onto/pop off of a list:
 push $val, @arr;

 my @arr1 = (3, 4, 5, 6, 7);
 my @arr2 = ("spam", "larch", "parrot");
 print "$arr[2]\n";
 $arr1[0] = 1;

• counting of array index starts from 0 just like C/C++ etc.

a.j.bevan@qmul.ac.uk

Hash Variables this is the PERL equivalent of a MAP

• Starts with a ‘%’
• associate a key with a value

 my %options = (
 "parrot" => "The dead parrot sketch",
 "larch" => "A tree",
 "spam" => "random stuff"
);

 foreach (sort keys %options)
 {
 print "\t$_ $options{$_}\n";
 }
 print "\tkey = parrot value = $options{parrot}\n";

keys values

get the keys for this hash

access the value corresponding the key parrot

an “associative
container” – look
up wrt. STL

There are a couple of commands for printing in PERL

 print "some info\n";
 printf "some info: %5.2f\n", $var;

& you can easily print to a file:

 open(OUT, ">outputfile.txt");

 print OUT "some info\n";
 printf OUT "some info: %5.2f\n", $var;

 close (OUT);

print to screen

formatted print statement

Some format characters for print (similar to C)
‘\t’ = tab
‘\n’ = new line
‘\a’ = a system beep

Printing in PERL

a.j.bevan@qmul.ac.uk

Running system commands in perl

 exec "sleep 5; ping somehost"
 fork a process to run the command and carry on
 executing the script WITHOUT waiting for the
 outcome of the command

 system "ping somehost"
 Execute the command AND WAIT for the system to
 return control to the script

 my @data = `grep somestring myFile.txt`;
 Like system – but get output redirected into a
 local variable (as an array) – same as for tcsh/bash etc

you can then remove the end of line characters from the array variable

 chomp (@data);

System calls in Perl use sh as the default shell

a.j.bevan@qmul.ac.uk

• The easy way is to pop inputs off of the bottom of @ARGV:

./myScript wibble hat (the command)

#!/usr/local/bin/perl –w (The script)
use strict;
my $in1 = shift;
my $in2 = shift;
print "$in1\n\t$in2\n";

> ./myScript wibble hat (The output)
wibble
 hat

1

2

3

a more robust way to deal with
command line input is to

 use Getopt::Long;

Getting input from the command line:

a.j.bevan@qmul.ac.uk

Examples: 2) Getting information from the system: PERL
 (This is the PERL solution for example #2)

•  Write a new script called test1.pl and start this off in the usual way:

#!/usr/bin/perl –w
use strict;

•  change permissions so you can run the script and use the command ls on
 the current directory and get the output to print:

my @data = `ls`;

chomp (@data);

foreach my $line (@data)
{
 print " $line\n";
}

Get rid of new line characters
in data (don’t need this here,
but it is useful to point out now)

run command and
get the output in a
local variable

just like sh or tcsh –
use back-ticks!

The for loop to print out each
line that you got back from ls

a.j.bevan@qmul.ac.uk

PERL Exercises
5) Write a script to add together two numbers
 and print the output.

–  Extend this to take two input numbers instead of having this hard-coded
in

6) Write a script to count the number of lines in a file
–  Extend this to print the file with the line number prepending the line

7) Write a script to execute a command on each file in a directory and
loop on this printing the file name and number of lines per file as you
go.

8) Write a script to run loopTest.csh and print the last line of the output
to the screen. [n.b. you can use backticks for this if you are really
lazy].

a.j.bevan@qmul.ac.uk

Example 5: A perl script to add together two numbers

#!/usr/local/bin/perl –w
use strict;
my $num1 = 5.2;
my $num2 = 7.3;
print $num1+$num2, "\n";

#!/usr/local/bin/perl -w
use strict;
my $num1 = shift || die;
my $num2 = shift || die;
print $num1 + $num2, "\n";

hardcode numbers
into script

get numbers
to add from
command line

die → if you get to this part of the script then perl dies…
|| → this is an OR. If there are <2 arguments passed to the script, it dies

Two new concepts:

a.j.bevan@qmul.ac.uk

Example 8: Print the last line from the result of running ls.

#!/usr/local/bin/perl –w
use strict;
my @data = `ls`;
chomp(@data);

print “the last line output from ls is\n”;
print “$data[-1]\n”;

This is a foolproof way of getting the last element
of an array in perl: use the array element [-1]

It only fails if the array is null.

a.j.bevan@qmul.ac.uk

•  Now that you have done the examples, you should note that exercise 6
 was a waste of your time …

•  there is a unix command called wc.
wc –l <filename>

 prints out the number of lines in the file…

•  This is a common lesson to learn … if you are trying to do something that is
 and obvious generic problem … then most probably either

 - there is (at least) a (single) command to do this already

 - there is going to be more than one way to solve the problem

 - someone you work with knows/has a solution to the problem already

