

# Multivariate Analysis Techniques Exercise Session: Example Results

BABAR Analysis School SLAC National Laboratory 25<sup>th</sup>-30<sup>th</sup> October 2009

Adrian Bevan (a.j.bevan@qmul.ac.uk)



# Comparing classifiers

- Note these plots use the default variable combination as set up in tmva\_example.cc. If you modified the variables/ methods to train, then your results may differ.
  - All methods are trained, and the weight files are written to a subdirectory weights that should be created in your current directory.
  - In addition to this you should have a ROOT file TMVA.root that contains the necessary information required to inspect the classifier performance.
  - You can plot the correlation histograms in TMVA.root by running the plotCorrelations.cc macro.
  - You can compare the separation between background and signal by running the plotEfficiencies.cc macro.

#### Correlations between variables

Pearson correlation coefficients are plotted below





- Some variables are highly correlated...
  - Q) will they all be useful in the MVA?

# Separation of signal and background

The plot produced by plotEfficiencies.cc is:

#### **MVA Performance Comparison**



#### There are 3 levels of separation:

Worst is the cuts based method.

Fisher and BDT gave a similar response.

The three MLP algorithms gave a similar response, and have the best signal/background separation.

- Q) Are all varaibles required?
- Q) Are other classifications or configurations better?
- Q) What do these distributions look like?

### What do the distributions look like?

■ The macro plotMVADistributions.cc can be used to plot the distributions of the MVA that you've obtained.



### What do the distributions look like?

What if we want to use the MLP in a fit to data?

#### **MVA** distributions for the MLP classifier



Can try to parameterise this shape with a non-parametric PDF.

Can try to transform the shape by a 1:1 mapping into something a little easier to parameterise.

Can use a mapping function such as:

$$\mathcal{N} = 1 - \arccos(MLP + \xi)$$

## What are the powerful discriminating variables?

- You need to look at the information printed to the standard output for this.
  - e.g. for the Fisher classifier:

```
--- TFHandler Factory
                    : Ranking input variables...
--- IdTransformation
                           : Ranking result (top variable is best
ranked)
--- IdTransformation
--- IdTransformation
                           : Rank : Variable : Separation
--- IdTransformation
--- IdTransformation
                           : 1 : bCosTBTR : 1.412e-01
                           : 2 : lgdr2P1n : 7.891e-02
--- IdTransformation
--- IdTransformation
                           : 3 : lgdr2P1c : 6.519e-02
--- IdTransformation
                           : 4 : bCosTBZ : 2.674e-02
--- IdTransformation
                           : 5 : lgdr0P1n : 2.314e-02
--- IdTransformation
                           : 6 : bCosBZ : 2.143e-02
--- IdTransformation
                           : 7 : lgdr0P1c : 9.404e-03
--- IdTransformation
                           : 8 : sumPtR
                                             : 8.101e-03
```

# Summary #3

- The problem of distinguishing between signal and background classes of events is a relatively simply one.
  - Only two target classes (straightforward to extend).
  - Covers many situations we encounter in real life (as often one background dominates over all others).
  - ... and you've now done this!
- The computation of an MVA is simplified greatly by the tools of the trade now available in High Energy Physics.
- As the saying goes: 'A poor workman always blames his tools'.
   Don't use an algorithm if you don't understand what it is and what the limitations of the method are.
  - This warning is equally valid for both financial institutions and particle physicists.
- Hopefully these lectures have provided you with an introduction to the subject and given you a few things to think about.