

PHY-103

Dr. Eram Rizvi & Dr. Jeanne Wilson

Scientific Measurement: Module Information Module Organisers: Dr E. Rizvi (room 401 : office hour Tues 1400 - 1500) Dr J.Wilson (room 507: office hour Wed 1000 - 1100)

All information is in booklet and online: <u>http://www.ph.qmul.ac.uk/~phy103/scm.html</u>

2 lectures per week (weeks 1 - 4 only) Francis Bancroft Building room 2.40 Tuesday 1200 - 1300 Friday 1200 - 1300

I-2 lab sessions per week: either Mon+Tue **or** Thu+Fri Choose this yourself with lab technicians today

Weeks 2-4	l lab/week	Complete 3 lab experiments
Weeks 5-6	2 lab/week	Complete 2 lab experiments
Week 7	no lectures/lab	Write up experiment 4 as formal report
Weeks 8	no lectures	Obtain formative assessment of report in your lab session
Weeks 9-11	2 lab/week	Complete one longer experiment
Week 12	no lab/lectures	Write-up long experiment

Exercises 2 Sets, weeks 4 and 6 Hand in by Thursday 1600 (20th Oct and 3rd Nov)

No exam: 100% coursework

Labs is located on 2nd floor of Physics building: 2-5pm Choose Mon/Tue or Thu/Fri Sign up in lab for your chosen day **today** Choose lab partner or lab technician will assign for you Experiment I-3 0% Experiment 4 25% Read the script (in booklet) thoroughly before starting expt Experiment 5 15% Each expt has a worksheet Experiment 6-12 40% Hand-in deadline is I week after the experiment Homework I 10% Late submission will be penalised Homework 2 10% It is required to submit expt I-3 Late work will not be marked! - solutions on web!

Watch the SCM website for changes, info, homework solutions!

You will fail the course if you do not submit ALL coursework

Mark penalties are as follows:

Length of time after submission deadline	Mark penalty
<24 hours	-20%
1-3 days	-50%
>3 days	-100%

Dr Eram Rizvi

Scientific Measurement - Lecture I

Module Overview

		Group				
Week	Dates	A1	A2	B1	B2	Marks
		Monday	Tuesday	Thursday	Friday	
1	Sept 26 – Sept30	Lectures on Tuesdays and Fridays				
2	Oct 3 – Oct 7	Complete experiments 1, 2, 3 (one per week, in weeks 2-4) according to the schedule in the				
3	Oct 10 - Oct 14					
4	Oct 17 – Oct 21		labora	tory		
	Monday and Tuesday Thursday and Friday					
5	Oct 24 – Oct 28	Experiment 4 or experiment 5 Lectures Tuesday and Friday		25% or 15%		
6	Oct 31 – Nov 4	Experiment 5 or experiment 4 Lectures Tuesday and Friday		15% or 25%		
7	Nov 7 – Nov 11	Reading week: write up experiment 4 Report				
8	Nov 14 – Nov 18	Formative Assessment of Experiment 4 Report Lectures Tuesday and Friday				
9	Nov 21 – Nov 25	Choose one of experiments 6–12 Lectures Tuesday and Friday		40%		
10	Nov 28 – Dec 2	Continue (one of three parts per week)				
11	Dec 5 – Dec 9	Continue (one of three parts per week)				
12	Dec 12 – Dec 16 Write up Report 6, 7, 8, 9,10,11, or 12					
		2 Homewor	·k exercises (due in weeks	4 and 6)	20%

Lab Demonstrators are:

Dr Eram Rizvi

Pete Crew

Dr Jeanne Wilson

Saqib Qureshi Also 2 postgraduate student demonstrators in each lab session

Dr Anthony Phillips

Dr Kevin Donovan

Dr Eram Rizvi

Scientific Measurement - Lecture I

5

Module Overview

Texts available in library short loan collection - no need to buy

Good statistics reference £26

Good guide to laboratory practice £26

Another good stats ref. £15

Guide to writing reports £17

Dr Eram Rizvi

Scientific Measurement - Lecture I

Whats the difference between these lists?

Luminferous aether Plum pudding atomic model Aristotelian Gravity Quantum mechanics Special relativity Newtonian gravity Thermodynamics

Whats the difference between these lists?

Luminferous aether Plum pudding atomic model Aristotelian Gravity Quantum mechanics Special relativity Newtonian gravity Thermodynamics

Nice ideas, but flawed - proven wrong

Great pillars of modern physics!

Dr Eram Rizvi

Scientific Measurement - Lecture I

Scientific Methodology - The Scientific Method

Science is driven by experiment and data

- Only experiment can distinguish between rival theories
- Only experiment can determine fundamental constants of nature c, \hbar , G, k are all derived from experiment NOT theory

Experiment is the final arbiter of Truth

Thus experimenters have a HUGE responsibility Honesty and Integrity are paramount Open mindedness: do not presume to know the "answer" Do not "fiddle" results to get 'correct' answer Provided your method is ok - Experiment is correct (almost) BY DEFINITION! If data & theory disagree, the theory is WRONG! Experiment tells us what the TRUTH is - Theory tells us why

OK, measurement is important

Lets measure the same object many times: measure a chair several times & plot results

> Why is there a spread of results? ruler is flimsy? some people can't read a ruler? space-time is fluctuating changing the size of the chair?

Dr Eram Rizvi

Scientific Measurement - Lecture 1

П

Any measurement has an <u>uncertainty</u> or <u>error</u> due to:

- equipment
- definition of measurement
- sight of observer
- angle of viewing the ruler & object
- calibration of instrument

How we deal with this is the subject of these lectures!

Aside: Physicists only measure 5 fundamental quantities

Length: Distance travelled by light in some time interval	
Time: Number of periods of specific wavelength radiat	ion
Current: Force between two conductors	
Temp.: Triple point of water	
Mass: Lump of metal in Paris!	

Typical uncertainty is usually ~ 2.5% poll is not as conclusive as news readers think!

Scientific Measurement - Lecture I

"How can a sample of only 1,000 or 2,000 possibly reflect the opinions of 42 million Britons within a 3% margin of error?"

George Gallup: Developed opinion polling in the 1930s: If you have a large bowl of soup, you don't have to drink the whole bowl to decide if it has too much salt in it - just stir it well, and one spoonful will suffice.

Dr Eram Rizvi

Scientific Measurement - Lecture I

15

Background on the gravitational constant

See Cohen and Taylor (1987).

The error bars represent the quadrated sum of the individually listed Type A and Type B uncertainties

.	
	1
2	

у
Ó.17
0.00
5.81
7.77
0.23
0.68
3.42
9.59
0.86
8.83
1.97
0.01
4.44
5.75
0.06
5.44
1.29
0.01
0.84
5 63
817
1.06
1.63
4 06
0.63
9.38
0.51

In an expt. x was varied and y was measured.
Is there a relationship between them?
What is the relationship between the two data?

Dr Eram Rizvi

Scientific Measurement - Lecture I

Data Analy	sis 🜔		<u>لې کې ا</u>
×	v		
0.41	, 0.17		
-0.01	0.00		
2.41	5.81		
2.79	7.77		
-0.48	0.23	8	
0.82	0.68		
1.85	3.42	· · ·	
3.10	9.59		
0.93	0.86	• 7	
2.97	8.83	[]	
1.40	1.97	[]	
-0.07	0.01	4	
2.11	4.44	· · ·	
2.40	5.75	· · · ·	
0.25	0.06	- _' -	
2.33	5.44	2	
1.13	1.29	· · ·	
-0.09	0.01		
0.92	0.84	· · · · · · · · · · · · · · · · · · ·	
2.37	5.63	⁰╘	
2.86	8.17	-0.5 0 0.5 1 1.5 2 2.5 3	
1.03	1.06	X	
1.28	1.63		
2.02	4.06	Humans are visual animals - brains recognise visual patterns very well	
0.79	0.63	Plotting graphs of data is a powerful technique in discovering patterns	
3.06	9.38		
0.72	0.51		

17

What is the difference between these numbers?

3 x 10² 314 314.159 265 314.159 26535 89793 23846 26433 83279 50288 41971 69399 37510 π x 100

All are representations of the same number.

Number of sig.figs implies precision of that number.

Only in rare cases will you know a number to more than 3-4 sig figs!

Dr Eram Rizvi

Scientific Measurement - Lecture I

19

What is the difference between these numbers?

3 x 10² 314 314.159 265 314.159 26535 89793 23846 26433 83279 50288 41971 69399 37510 π x 100

All are representations of the same number.

Number of sig.figs implies precision of that number.

Only in rare cases will you know a number to more than 3-4 sig figs!

Quantum electrodynamics: gyromagnetic ratio of the electron: g

Theory	$\frac{1}{2}(g_{th} - 2) = 1159652140(28) \times 10^{-12}$
Experiment	$: \frac{1}{2}(g_{exp}-2) = 1159652186.9(4.1) \times 10^{-12}$

I never want to see more than 3 sig figs unless you can justify it!!!

note: $|159652140(28) \times 10^{-12}$ is same as $(1159652140 \pm 28) \times 10^{-12}$

Only experiment can determine the truth Measurement <u>ALWAYS</u> has uncertainty Never quote a measurement without its uncertainty Plotting data graphically is very useful Never plot graphs without error bars ... ever! Never quote more sig figs than necessary

Dr Eram Rizvi

Scientific Measurement - Lecture I