The Standard Model of Particle Physics -

Lecture 3

- Quantum Numbers and Spin
- Symmetries and Conservation Principles
- Weak Interactions
- Accelerators and Facilities

Eram Rizvi

Royal Institution - London 21st February 2012

Outline

A Century of Particle Scattering 1911 - 2011

- scales and units
- overview of periodic table \rightarrow atomic theory
- Rutherford scattering \rightarrow birth of particle physics
- quantum mechanics a quick overview
- particle physics and the Big Bang

A Particle Physicist's World - The Exchange Model

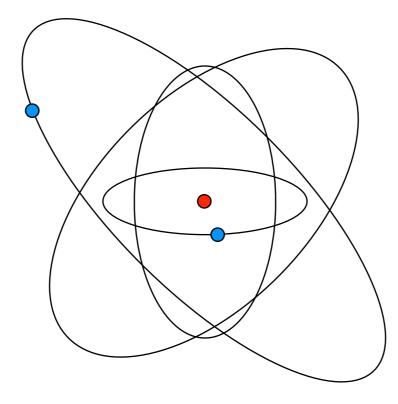
- quantum particles
- particle detectors
- the exchange model
- Feynman diagrams

The Standard Model of Particle Physics - I

- quantum numbers
- spin statistics
- symmetries and conservation principles
- the weak interaction
- particle accelerators

The Standard Model of Particle Physics - II

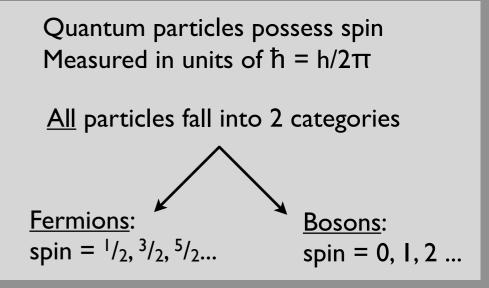
- perturbation theory & gauge theory
- QCD and QED successes of the SM
- neutrino sector of the SM


Beyond the Standard Model

- where the SM fails
- the Higgs boson
- the hierarchy problem
- supersymmetry

The Energy Frontier

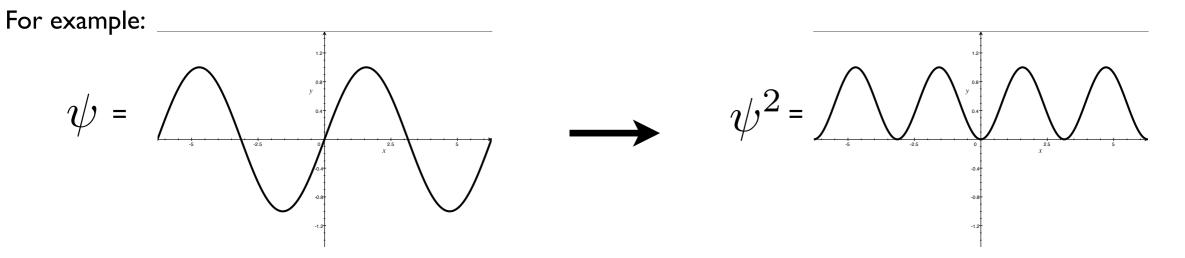
- large extra dimensions
- selected new results
- future experiments


Why do electrons not fall into lowest energy atomic orbital?

Niels Bohr's atomic model: angular momentum is quantised \Rightarrow only discreet orbitals allowed Why do electrons not collapse into low energy state?

What do we mean by 'electron' ? charge = -1spin = $\frac{1}{2}$ mass = 0.511 MeV/c²

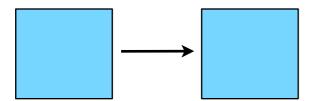
Any object satisfying these conditions is an electron!



True for all particles A set of <u>quantum numbers</u> specifies the particle type Quantum numbers are encoded in the wave function Wave function ψ is related to probability of observing the particle

P = Probability of observation A = some constants of nature

$$P = A\psi^2$$


probability can never be negative probability can never be > I Experiment is only sensitive to ψ^2

Many forces and phenomena in nature exhibit symmetries An object has a symmetry if an operation/transformation leaves it invariant (i.e. the same)

Rotational Symmetry

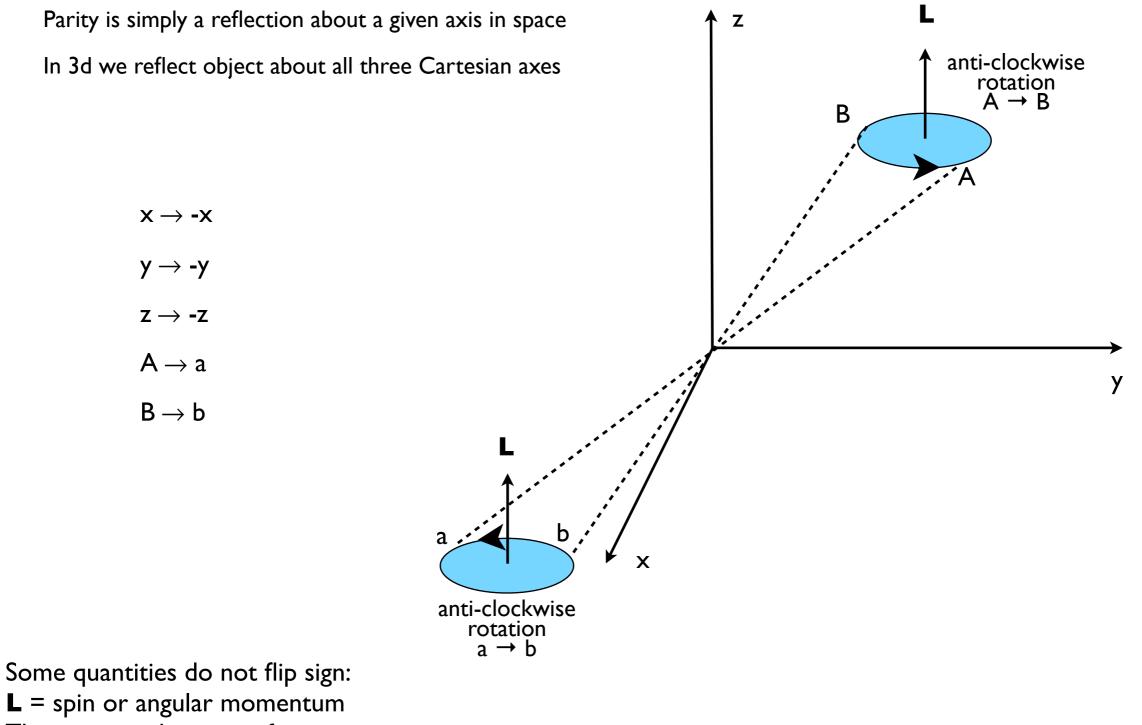
Squares rotated 90° remain unchanged transformation is $\theta \rightarrow \theta + 90^{\circ}$

Mass symmetry

$$F = G \frac{m_1 m_2}{r^2} = G \frac{m_2 m_1}{r^2}$$

Newtons Law is symmetric about transformations of m_1 and m_2

Reflection Symmetry = Parity



Rectangle reflected about axis is invariant transformation is $x \rightarrow -x$

Time symmetry

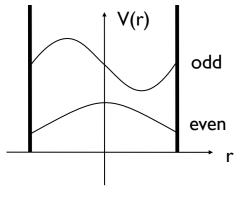
Physics remains the same if time runs backwards Reflections about the t=0 axis are invariant transformation is t \rightarrow -t

This remains the same after a parity inversion

Symmetric Wave functions

In terms of wave functions of a particle trapped in a "box" by a potential energy field V

V = 0 inside the box


 $V = \infty$ at the walls of the box \Rightarrow particle is trapped

we solve Schrödinger equation to find all allowed states

$$\frac{-\hbar^2}{2m}\nabla^2\psi + V(r)\psi = i\hbar\frac{\partial}{\partial t}\psi$$

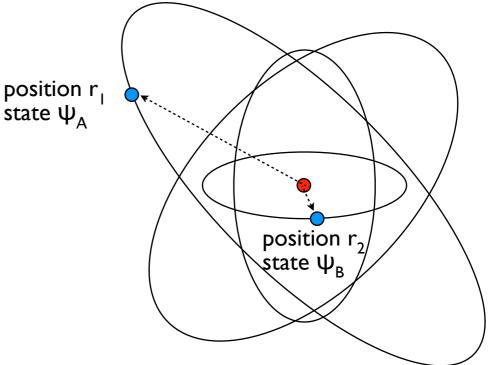
If potential V is symmetric:

$$V(r)=V(-r)$$
 then: $|\psi(r)|^2\equiv |\psi(-r)|^2$ $ightarrow$ $\psi(-r)=\pm\psi(r)$

If V(r) is unchanged then resulting allowed particle states must be even or odd parity $\psi(-r)=+\psi(r) \quad \text{even parity} \\ \psi(-r)=-\psi(r) \quad \text{odd parity}$

 $V(r) \neq V(-r)$ then $|\psi(r)|^2 \neq |\psi(-r)|^2$

Two-particle Wave functions



Consider 2 electrons in Helium atom at positions r_1 and r_2 and in different states ψ_A and ψ_B What is the combined two-particle wave function ? We try:

$$\psi_{AB} = \psi_A(r_1) \cdot \psi_B(r_2)$$

Interchanging the two electrons we get:

$$\psi_{BA} = \psi_B(r_1) \cdot \psi_A(r_2)$$

Electrons are indistinguishable - they do not carry labels to identify one from another

All electrons are the same

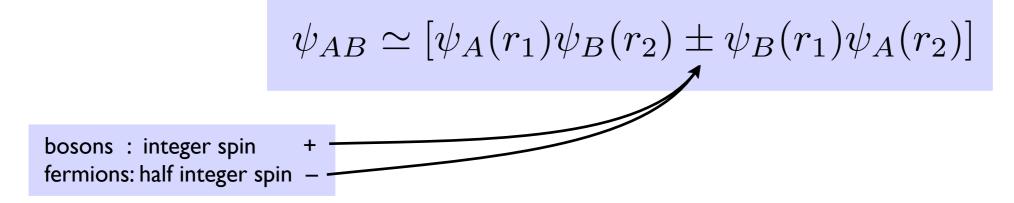
So measurement cannot distinguish if two electrons swapped position

But, if a measurement could detect the interchange then they are not indistinguishable

Therefore this 2-particle combined wave function is no good!

The Pauli Exclusion Principle

For indistinguishable particles, probability densities must be invariant to exchange i.e. ψ_{AB} can differ only by sign from ψ_{BA}


Wave-functions are symmetric if $\psi_{AB}=+\psi_{BA}$

Wave-functions are anti-symmetric if $\;\psi_{AB}=-\psi_{BA}\;$

Experiments show:

particles with integer spin (0, 1, 2...) have symmetric wave-functions particles with half integer spin (1/2, 3/2, 5/2) have anti-symmetric wave-functions

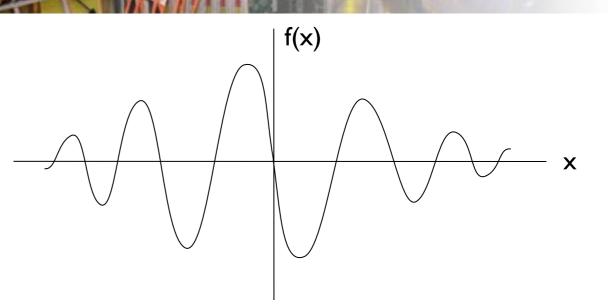
For two particle systems take wave function of the form:

Wolfgang Pauli

Nobel Laureate 1945

What happens for two identical particles in same quantum state? $\,\psi_A=\psi_B\,$

 $\psi_{AB}
ightarrow 0$ for identical fermions (half integer spin particles)


Pauli Exclusion Principle: Identical fermions cannot occupy the same quantum state!

This stops the atom from collapse!

Eram Rizvi

Consider this function f(x): exact functional form is unknown What do we know about it? it is odd i.e. f(-x) = -f(x) Fourier transform will have no cos terms sum from -n to +n is 0

So symmetries can provide useful information

Particularly dynamical symmetries of motion

Greeks believed stars moved in circles since they were most symmetrical orbits

Newton realised fundamental symmetries revealed **not** in motions of individual objects...

...but in set of all possible motions

Symmetries are manifest in equations of motion - not particular solutions to those equations Gravity is spherically symmetric, but planets have elliptical orbits In 1917 role of symmetries in physics was understood: Emmy Noether's Theorem:

Every symmetry of nature yields a conservation law (and vice versa!)

Translation in time Translation in space Rotations Gauge Transformation

Energy conservation Momentum conservation Angular Momentum conservation Charge conservation

Laws of physics are symmetric with respect to translations in time: they are the same today as they were yesterday

Analysing the set of transformations of a system uses Group Theory

Imagine swapping all numbers +ve and -ve e.g. my bank account Doing this does not break the laws of mathematics I suddenly become very rich indeed...

> ...but if the entire world did this simultaneously we would notice no difference at all! The banking world is symmetric under sign inversion of real numbers The total amount of money is conserved !!

A symmetry principle has yielded a law of conservation

In forming theories physicists look for symmetries to help explain phenomena In particle physics such symmetries tell us of the nature of space-time & particles themselves Consider charge symmetry: replace all particles with anti-particles

Our universe is composed of matter

We **happen** to call it "matter"

We **could** have called it "anti-matter"

But, we **do know** that we are made of the same type (either all matter or not) Fundamental laws of nature do not tell us if we are made of matter or anti-matter There is no difference!

Same is true of parity inversion:

Parity inversion turns left-handed co-ordinate system into a right-handed one

There is no fundamental distinction between "left" and "right"

OK, humans have hearts on left side of body...

But we concern ourselves with laws of nature, not accidental arrangement of objects

Similarly for time reversal symmetry:

If we replace t with -t in all equations

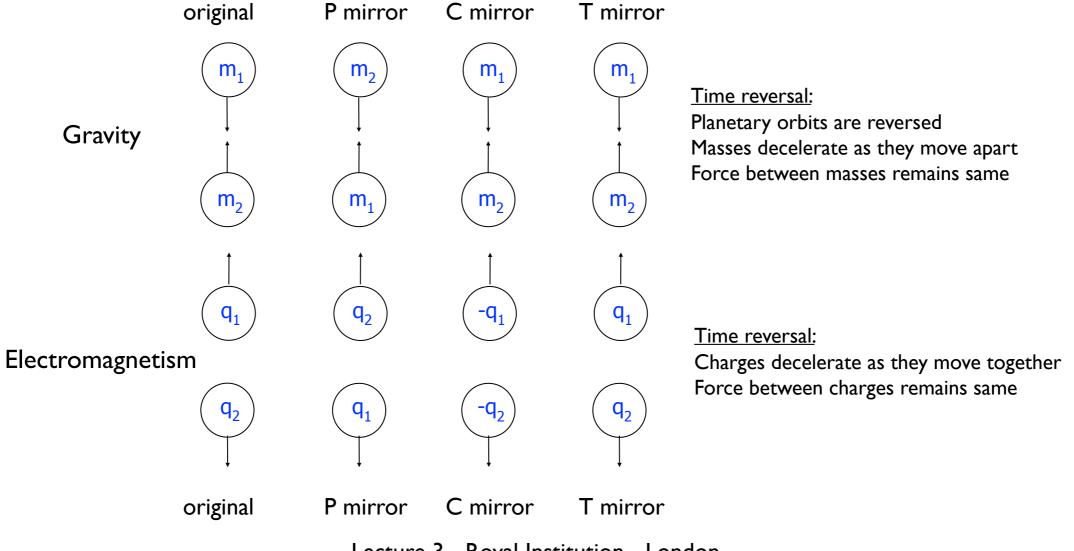
If we did turn time backwards - laws of physics are expected to be the same

In this universe time <u>does</u> run forwards...

... if we changed this, we don't expect Newton's laws to fail

At least, we expect universe to behave this way...

Universal Symmetries


Charge, Parity & Time are 3 fundamental symmetries:

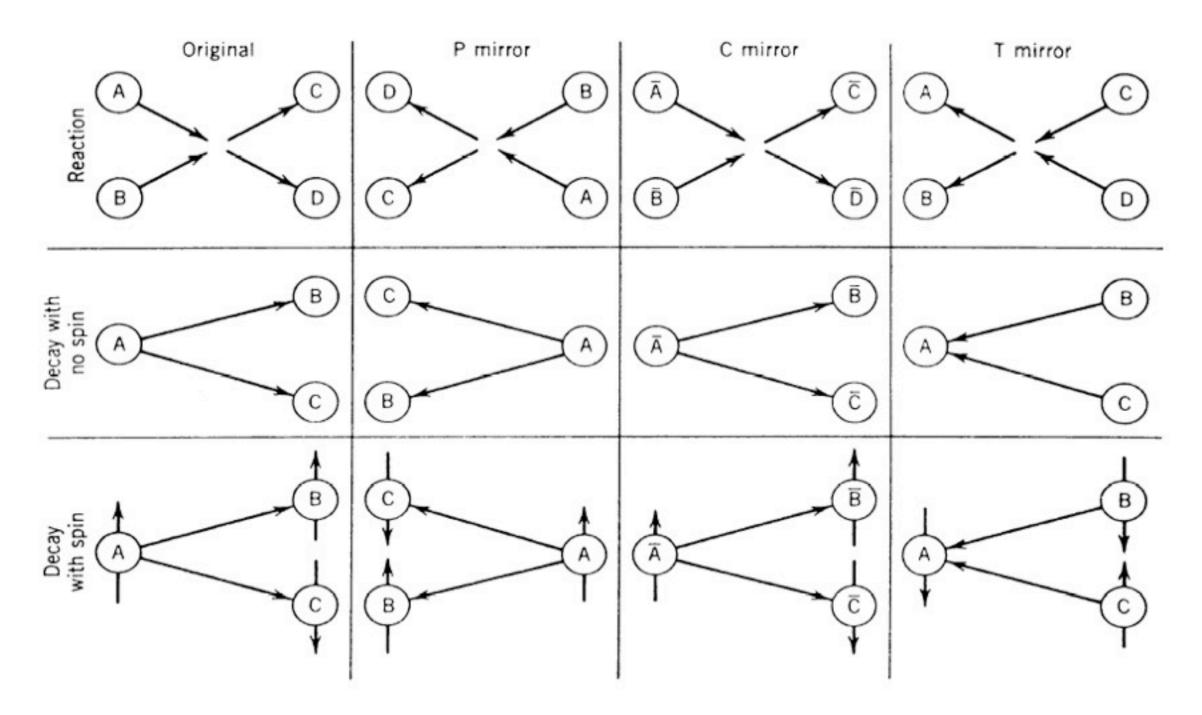
С	Charge conjugation	swap all particles with anti-particles
Ρ	Parity inversion	reflect system about origin: $P\Psi(r) = \Psi(-$

- Parity inversion
- Т Time reversal
- reflect system about origin: $P\psi(r) = \psi(-r)$
- time is reversed in direction: $T\Psi(t) = \Psi(-t)$

Gravity, & electromagnetism are both invariant to C, P and T inversions

8 experiments of two particles with masses m_1 and m_2 and electric charge q_1 and q_2

Universal Symmetries

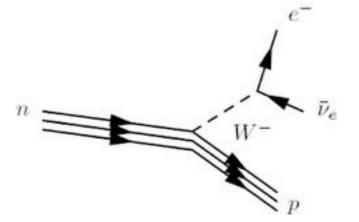


Can test C, P, and T symmetries in a series of experiments: $A+B \rightarrow C+D$

Test P: swap positions of A and B (i.e. projectile A and target B, instead of vice versa)

Test C: exchange A and B for anti-particles

Test T: collide C and D to produce A and B



Parity Violation

<u>یں۔</u>

Wolfgang Pauli wrote: "I do not believe that the Lord is a weak left-hander, and I am ready to bet a very large sum that the experiments will give symmetric results"

Richard Feynman bet \$50 that experiment would confirm parity as a valid symmetry

Beta decay is a weak process Mediated by W exchange

In 1956 Chien-Shiung Wu showed parity is violated in radioactive beta decay Weak force does not conserve parity!

	Conserves Charge?	Conserves Parity?
Electromagnetism	yes	yes
Strong	yes	yes
Weak	yes	no!

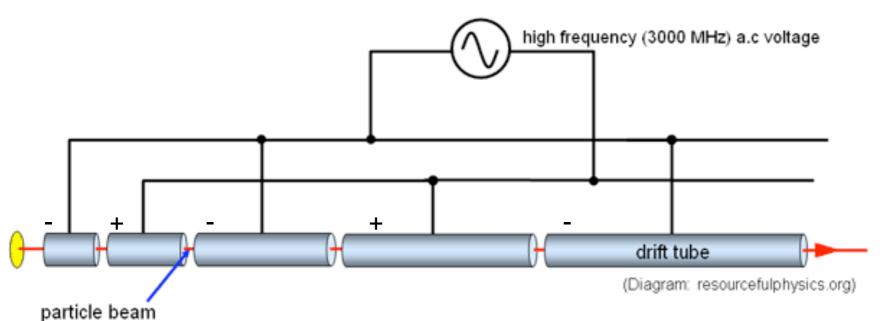
Laws of physics are different for real-world and mirror experiments!

nts! tion in 1956 i's validation

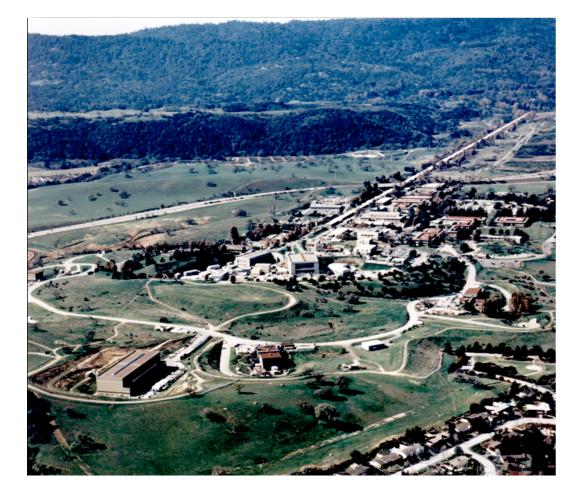
C.N.Yang

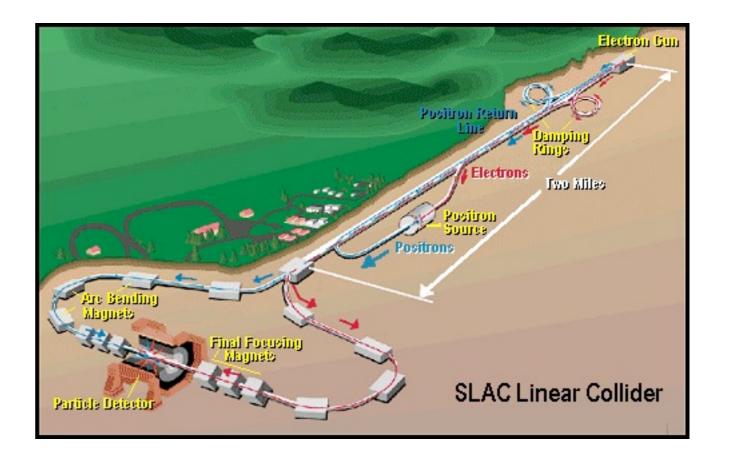
Madame Wu

Nobel Laureates 1957



T.D. Lee

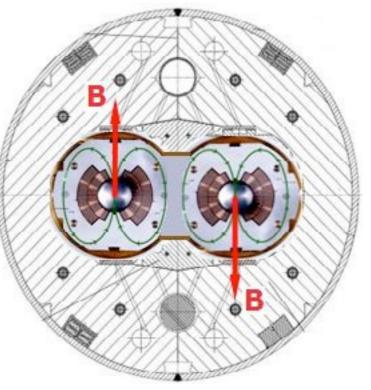

Lee & Yang predicted parity violation in 1956 Awarded Nobel prize in 1957 after Wu's validation


Particle Accelerator Facilities

No electric field inside drift tubes Electric field non-zero between tubes Adjust tube gap as particle accelerates

The LHC

The Large Hadron Collider



27 km circumference tunnel in France / Switzerland - near Geneva Highest energy accelerator in the world Protons accelerated to 7,000 GeV = 99.9999991% speed of light High vacuum Super cold superconducting magnets to achieve strong magnetic fields 17,000 A current in magnets Four experiments: Atlas CMS

LHCb

Alice

Eram Rizvi

The LHC

Operating temperature: -271°C One of the coldest places in universe High energy collisions equivalent to temperatures 100,000 times hotter than sun's core High vacuum needed to avoid unwanted collisions with air molecules - less dense than solar system 1200 dipole magnets to bend the protons Protons circulate 11,000 times per second Generates up to 600 million collisions per second LHC costs for material, construction, personnel (excluding experiments) = € 3,000,000,000

