Proton Structure at HERA

Measurements of Proton Structure at Low Q²

The High Q² regime Neutral and Charged Current Processes

QCD: Partons in the Proton and α_s

Eram Rizvi Birmingham University

Eram Rizvi

HERA collides e and p

study strong, electromagnetic & weak forces through Deep Inelastic Scattering

At fixed \sqrt{s} : two kinematic variables: x & Q² Q² = s x y

 Q^2 = "resolving power" of probe High Q^2 : resolve 1/1000th size of proton

Neutral and Charged Current Processes

16/02/04

$$\widetilde{F}_{2} \propto \sum (xq_{i} + x\overline{q}_{i})$$
$$x\widetilde{F}_{3} \propto \sum (xq_{i} - x\overline{q}_{i})$$
$$\widetilde{F}_{L} \propto \alpha_{s} \cdot xg(x,Q^{2})$$

only sensitive at high Q^2 only sensitive at low Q^2

dominant contribution

and high y

0

similarly for W_2^{\pm} , xW_3^{\pm} and W_L^{\pm}

$$\widetilde{\sigma}_{NC} = \frac{Q^2 x}{2\alpha \pi^2} \frac{1}{Y_+} \frac{d^2 \sigma}{dx dQ^2}$$
$$\widetilde{\sigma} = \widetilde{F}_2 \quad \text{when} \quad \widetilde{F}_L \equiv x \widetilde{F}_3 \equiv$$

Eram Rizvi

Kinematic Range

Conventional QCD evolution only tells us Q² dependence

x dependence must come from data

Method:

Measure cross sections

Fit data – extract x dep. of partons

HERA PDFs extrapolate into LHC region

LHC probes proton structure where gluon dominates (gluon collider)

HERA data crucial in calculations of new physics & measurements at LHC

F₂ dominates cross-section

Range in x: 0.00001 – 1

Range in Q² \sim 1 - 30000 GeV²

Measured with ~2-3% precision

Directly sensitive to sum of all quarks and anti-quarks

Indirectly sensitive to gluons via QCD radiation - scaling violations

HERA Precision F₂ Data

H1 Extraction of F_L : The Shape Method

16/02/04

F₁ is directly sensitive to gluon

Shape of σ_{r} at high y driven by kinematic factor y^2/Y_{\perp} not F_{r} behaviour Whole x-range of measured data used to fit F₂ and F₁ no extrapolation of F_2 - smaller errors

Eram Rizvi

Initial state radiation reduces \sqrt{s} At fixed x,Q² then y is different Changes contribution of F₂ and F_L Measure σ_{NC} vs y: fit for F_L

 $\sigma_{NC} = F_2 - \frac{y^2}{Y_+} F_L$

ZEUS

16/02/04

Eram Rizvi

xF₃ and the valence quarks

HERA confirm valence quark structure Errors dominated by stat. error of e- sample Clear need for high luminosity

At high Q2 NC cross sections for e^+ and e^- deviate

$$\widetilde{\sigma}_{NC}^{\pm} \sim \widetilde{F}_2 \mp \frac{Y_-}{Y_+} x \widetilde{F}_3$$

Subtract NC positron from electron cross section

X

Charged current process provides sensitivity to quark flavour

QCD analyses require many choices to be made Should be reflected in PDF uncertainty:

- Q₀² starting scale
- Choice of data sets used
- Cuts to limit analysis to perturbative phase space (Q^2_{min})
- Choice of densities to parameterise (e.g. u, d, xg, xS)
- Treatment of heavy quarks
- Allowed functional form of PDF parameterisation
- Treatment of experimental systematic uncertainties
- Renormalisation / factorisation scales
- Choice of a_s
- etc...

PDFs parameterised at starting scale Q_0^2

- ZEUS perform a new global analysis use world structure function data ZEUS 96/97 NC e⁺ reduced cross sections gluon / quarks at low x / Q² F_2 NMC p &D and ratio F_2 D/p quarks at medium x F_2 E665 p & D quarks at medium x F_2 BCDMS p only u quarks at high x / low Q² xF₃ CCFR (0.1 < x < 0.65) valence quarks at high x / low Q²
- Standard xg, xu_v, xd_v, Sea, x($\overline{d} \overline{u}$) decomposition of proton

•
$$Q_0^2 = 7 \text{ GeV}^2 / Q_{\min}^2 = 2.5 \text{ GeV}^2$$

- Use functional form = A . $x^{b} \cdot (1-x)^{c} \cdot (1 + dx + ex)$
- Additional constraints on valence quark parameters ($b_{uv} = b_{dv} = 0.5$)
- Experimental systematic uncertainties are propagated onto final PDF uncertainty
- Use Thorne/Roberts variable flavour number scheme.
- x($\bar{d} \bar{u}$) params taken from MRST only normalisation free in fit

H1 QCD Fit

Use only H1 inclusive NC & CC x-sections (e^+p and e^-p) H1 dedicated fit: tune fitted PDFs to HERA NC/CC cross section sensitivity:

 $u_{v} = U - \overline{U}$ xU = xu + xc $d_{y} = D - \overline{D}$ xD = xd + xs $F_2 = \frac{4}{9}(xU + x\overline{U}) + \frac{1}{9}(xD + x\overline{D})$ $x\overline{U} = x\overline{u} + x\overline{c}$ $x\overline{D} = x\overline{d} + x\overline{s}$ $\sigma_{cc}^{+} = x\overline{U} + (1-y)^2 xD$ $\sigma_{cc}^{+} = xU + (1-y)^2 x\overline{D}$ xg

Perform fit in massless scheme - appropriate for high Q²

Careful choice of parameterisations search for χ^2 saturation

 $Q_0^2 = 4 \text{ GeV}^2 / Q_{\min}^2 = 3.5 \text{ GeV}^2$

Use BCDMS p and D data as cross check only

Similar technique used for dedicated H1+BCDMS fit for gluon + α_{2}

Check for consistency of H1 & BCDMS datasets first

Eram Rizvi

H1: χ^2 / ndf = 0.88 (621 data points, 10 pars.)

ZEUS: χ^2 / ndf = 0.95 (1263 data points, 11 pars.)

HERA able to extract PDFs w/o external input
PDFs broadly agree at low x (HERA data)
Discrepancies in med-high x region
CTEQ6 lies between the two fits
Some uncertainties unaccounted?
data sets inconsistent?

- missing theory
- PDF parametric forms?
- different assumptions

alpha-s

H1: 0.1150 +-0.0017(exp) +0.0009 -0.0007(model) if: systematic errors are not fitted: +0.0005
NMC replaces BCDMS 0.116±0.003 (exp)
4 light flavours: +0.0003

BCDMS deuteron data added: 0.1158 ± 0.0016 (exp)

Large χ^2 variations if renormalisation scale is varied: ±20 units ! \rightarrow (1/4 .. 4) : ± 0.005 (H1) \rightarrow (1/2 .. 2) : ± 0.004 (ZEUS)

Variations of factors 2 or 4 are ad hoc

Largest single uncertainty in determination of α_{s}

Expected to be reduced in a NNLO analysis

NC: Q²=13500 GeV²

HERA-II now in production Lumi mode Experiments no longer limited by background Machine routinely delivering almost 2 pb⁻¹ per week Analysis of new data in progress...

High Q² events recorded recently in new data

CC: $Q^2 = 6000 \text{ GeV}^2$