W and Anomalous Single Top Production

Deep Inelastic Scattering Workshop London, UK 7th-11th March 2008

- Introduction
- Isolated Leptons with High P_{T.miss}
- Cross Section Determination
- Measurement of W Polarisation Fractions
- Anomalous Single Top Production
- Conclusions

Eram Rizvi

Quick reminder of event selection in both channels

 $5^{\circ} < \theta_{lep} < 140^{\circ}$ $P_{T,e/\mu} > 10 \text{ GeV}$ $P_{T,miss} > 12 \text{ GeV}$ lepton-jet distance > 1 unit in η - Φ

Further selections applied for background rejection (see previous talk)

Use complete HERA I+II data set 478 pb⁻¹ (e⁺p & e⁻p scattering data sets)

combine electron & muon samples

Backgrounds:

Neutral Current events with fake missing ${\rm P}_{_{\rm T}}$

Charged Current events with isolated hadron misidentified as lepton Lepton pair production ($\gamma\gamma$ process) with fake missing P_T and one lost lepton Photoproduction with fake missing P_T and misidentified hadron Isolated Leptons With Large Missing Transverse Momentum

09/04/08

H1 e [±] p data HERA I+II (478 pb ⁻¹)	e channel obs. / exp. (signal)	μ channel obs. / exp. (signal)	e and µ channels obs. / exp. (signal)
Full sample	42 / 46.7 ± 6.5 (69%)	17 / 12.2 ± 1.8 (82%)	59 / 58.9 ± 8.2 (72%)
$P_T^X > 25 \text{ GeV}$	14 / 8.5 ± 1.5 (68%)	10 / 7.3 ± 1.2 (79%)	24 / 15.8 ± 2.3 (73%)

Eram Rizvi

09/04/08

Use this sample to extract cross section for Isolated e/ μ & Large P_{T.miss}: $\sigma_{\ell+P_T}$ Defined purely in terms of event topology Includes all processes with real isolated e/μ and genuine $P_{T,miss}$

 $\sigma = \frac{N_{data} - N_{bkd}^{MC}}{\mathcal{L} \ \mathcal{A}} \qquad \text{with} \qquad \mathcal{A} = \frac{N_{rec}^{MC}}{N_{aen}^{MC}} \qquad \text{smeared detector acceptance} \\ \text{from reconstructed & generated} \\ \text{CM} \ \ell \text{ sincel} \ MC \qquad \text{inverses}$

SM / signal MC events

Good SM description and large W production contribution allows cross section for single W[±] production (W \rightarrow e/µ + X): σ_W

Differ in definition of 'signal' processes e.g. Z⁰ production is signal for $\sigma_{\ell+P_T}$ only

Include Branching ratio = 0.24 for $W \rightarrow e/\mu + X$

leptonic W decay to any final state with $e/\mu + X$

Both cross sections based on identical event selection

cross sections defined for: $5^{\circ} < \theta_{lep} < 140^{\circ}$ $P_{T,e/\mu} > 10 \text{ GeV}$ $P_{T,miss} > 12 \text{ GeV}$ lepton-jet distance > 1 unit in η - Φ

H1	HERA I+II Data / pb	SM / pb
$\sigma_{\sigma_{\ell+P_T}}$	$0.24 \pm 0.05 (\text{stat}) \pm 0.05 (\text{sys})$	$0.26\pm0.04(\mathrm{th.sys})$
σ_W	$1.23 \pm 0.25 ({ m stat}) \pm 0.22 ({ m sys})$	1.31 ± 0.20 (th.sys)

Systematic uncertainties on the measurement:

- dominated by MC model uncertainties
- smaller contributions from lepton ID efficiency
- calorimeter scale and polar angle measurement uncertainties negligible
- theoretical uncertainty includes estimate of higher NLO corrections

Excellent agreement with SM prediction

Selection gives ~35 events - study angular decay properties...

W Polarisation Fractions

W polarisation fraction defined in $cos(\theta^*)$ variable:

angle between decay lepton in W rest frame & W momentum in lab frame

W Polarisation Fractions

Additional selection criteria employed to reconstruct W and neutrino Majority of events yield two neutrino solutions: forward / backward Forward solution chosen when $\theta^{I} < 35^{\circ}$ (about 80% success rate)

Require reliable lepton charge measurement: $\theta^{I} > 20^{\circ}$

Charged track: curvature significance > 1

 \Rightarrow charge misidentification <1%

signal purity > 80%

Contains all W⁺ and W⁻ data

Solid Blue line = 2 parameter fit to data for polarisation fractions

W Polarisation Fractions

- W production cross section agrees well with SM
- But at high $P_{T,X}(>25)$ an excess remains

- Excess unlikely to be W production typical low P_{T,X} process
- \bullet Topology is similar to top decay $t \rightarrow bW$
- Very small SM cross section < 1fb
- Possible cause:

Anomalous single top production Flavour Changing Neutral Currents

Charm contributions neglected Vector couplings to Z⁰ neglected Use 'standard' selection +

- good lepton charge determination
- good top quark reconstruction #

4 vector reconstruction:

b quark = sum of all hadronic jets
neutrino reconstructed as before
top quark = lepton + v + b 0 < M_{ivb} < 300 GeV

Selected events:

e: 24 (SM: 26 ± 4) µ: 10 (SM: 9.3 ± 1.3)

Multivariate discriminator: separate signal and b/g $P_{T^{b}}$, M_{Ivb} and θ^{I}_{w}

Anomalous single top MC used for signal training & W production for b/g Few events are compatible with top - no large significance

09/04/08

Recent updated CDF result on vector coupling

Summary

<u>Conclusions</u>

- H1 analysed complete HERA I+II 478 pb⁻¹
- Cross section measured for topology of: isolated leptons with large missing P_T excellent SM agreement (excess at high P_T)
- Cross Section measurment extended to W production
- Polarisation fractions for W production have been determined in good agreement with SM
- High P_{τ} excess interpreted as anomalous single top production
- No significant anomalous coupling observed limits set on ep \rightarrow etX: < 0.16 pb $\kappa_{tu\gamma}$ < 0.14 most stringent limit